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a b s t r a c t

In this paper, a visco-hyperelastic skeletal muscle model is developed. The constitutive relation is based

on the definition of a Helmholtz free energy function. It is assumed that the Helmholtz energy can be

decomposed into volumetric and isochoric parts; furthermore, the isochoric energy can be decoupled

into hyperelastic and viscous parts. The model developed involves 14 material parameters and its

performance is evaluated by comparing the finite element simulation results with the published

experimental studies on the New Zealand white rabbit tibialis anterior muscle. Results show that this

model is able to describe the visco-hyperelastic behaviour of both passive and active skeletal muscle

tissues under high strain rates (10/s and 25/s).

Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Skeletal muscle plays an important role in the human body
system. It generates voluntary forces leading to motion and
provides protection to the upright skeleton. Like other biological
tissues, it exhibits a highly complex mechanical behaviour which
includes active, quasi-incompressible, fibre-enforced, viscoelastic
and hyperelastic behaviour (Fung, 1981). Although some math-
ematical skeletal muscle models (Blemker et al., 2005; Martins
et al., 2006; Tang et al., 2009) have been developed in recent
years, the effect of viscoelasticity has been ignored in these
models. However, it has been shown that the stress–strain
relationship of skeletal muscle is very sensitive to the loading
rates (Myers et al., 1998; Van Loocke et al., 2008). Furthermore, in
the injury simulations of human body involved in car crash and
sports impact, the viscoelastic properties of the human muscles
certainly play an important role, since they are loading rate-
dependent. Thus, it is very demanding to develop accurate
visco-hyperelastic skeletal muscle models.

Only a few viscoelastic skeletal muscle models have been
developed in recent years. Tsui et al. (2004) used a viscoelastic
motor element, which was represented by a linear time function
of the strain rate and activation amplitude. Hedenstierna et al.
(2008) simulated the muscle tissue behaviour by combining
passive non-linear viscoelastic continuum elements with active
truss elements. Van Loocke et al. (2008) proposed a quasi-linear
viscoelastic (QLV), strain-dependent Young’s moduli (SYM) model
to represent the skeletal muscle viscoelastic behaviour in
compression. However, it was found that this QLV–SYM model

presented poorer predictive capabilities due to nonlinearities in
the tissue response. A new nonlinear viscoelastic (NLV), strain-
dependent Young’s moduli (SYM) model (Van Loocke et al., 2009)
was developed to capture the nonlinear behaviour observed
during low frequency, high amplitude cyclic tests. In this paper,
an alternative method is used to develop the visco-hyperelastic
skeletal muscle constitutive relation. This method uses the
definition of a Helmholtz free energy function (Ogden, 1984)
and it has been used to develop visco-hyperelastic constitutive
relations for human knee ligaments (Pioletti et al., 1998),
biological connective tissues (Limbert and Middleton, 2004),
posterior cruciate ligament (Limbert and Middleton, 2006) and
periodontal ligament (Zhurov et al., 2007). However, its applica-
tion to skeletal muscle tissue has not been investigated to date. In
this paper, the visco-hyperelastic constitutive relation for skeletal
muscle is formulated and the performance of this model is
evaluated.

2. Constitutive relation for visco-hyperelastic skeletal muscle

The skeletal muscle is modelled as an active, quasi-incom-
pressible, transversely isotropic and visco-hyperelastic composite,
comprising a ground substance and the muscle fibres (Fig. 1). The
ground substance is assumed to be a compliable isotropic solid.
The fibres are assumed to have a single preferred direction n0 and
modelled using Hill’s 3-Element model (Fig. 1). Both the matrix
and the fibres are assumed to have a viscous response.

It is assumed that the Helmholtz energy function can be
decoupled into an elastic energy function and a viscous energy
function. To describe a quasi-incompressible solid, an additional
decomposition of the strain energy function into a volumetric and
an isochoric part is performed. The total strain energy in the
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skeletal muscle can be written as

c¼ce
iso IaðX,C,NÞ
n o

a ¼ 1...5

h i
þcv
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U

,NÞa ¼ 1...12

( )" #
þcvolðJÞ
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where X is the position of the material point in the reference
configuration, C

¯
is the modified right Cauchy–Green deformation

tensor, C
U

is the modified rate of the right Cauchy–Green
deformation tensor, N is a symmetric second order tensor

N¼n0�n0, fIaga ¼ 1...5 and fJaga ¼ 1...12 are the modified invariants

and J is the Jacobean of the deformation gradient.

2.1. Volumetric response function cvol

The quadratic volumetric response function used by Martins
et al. (1998) is adopted here:

cvolðJÞ ¼
1

D
ðJ�1Þ2 ð2Þ

where D is the compressibility constant.

2.2. Isochoric hyperelastic strain energy function ce
iso

The isochoric hyperelastic contributions come from both the
matrix and muscle fibres. It is assumed that the hyperelastic
interaction between the matrix and muscle fibres can be ignored.
Therefore, the isochoric hyperelastic strain energy can be written as

ce
iso ¼ce

mðI1Þþc
e
f ðlf ,lsÞ ð3Þ

The hyperelastic matrix contribution is characterised with the
neo–Hookean strain energy density (Ogden, 1984)

ce
mðI1Þ ¼

b

2
ðI1�3Þ ð4Þ

where I1¼I:C, I is the second order unit tensor and b is a material
parameter.

The hyperelastic response from the fibres is characterised
using Hill’s 3-element model (Fig. 1). The total stress in the fibre
sf is the sum of the stresses in the series elastic element (SEE) ss

and the parallel element (PE) sp. The model presented in this
paper is mainly used to characterise the skeletal muscle
behaviour under tension. So, when the muscle is under the
passive and compressive state, the assumption that the fibres
exhibit zero force leading to an isotrpic model is made, although it
has been demonstrated in Van Loocke et al. (2006) work that
skeletal muscle exhibits non-isotropic in compression. The
hyperelastic energy function for the fibres can be expressed as

ce
f ðlf ,lsÞ ¼

Z lf

1
½ssðl,lsÞþspðlÞ�dl ð5Þ

where l̄f is the fibre stretch ratio and ls is the stretch ratio in the
SEE.

A recurrence relation is used to express the stress produced in
the SEE (Fung, 1981):

tþDtss ¼ eaDls ðtssþbÞ�b ð6Þ

where

tss ¼ b½eað
tls�1Þ�1� ð7Þ

and a and b are material constants.
The stress produced in the contractile element (CE) is given by

tþDtsm ¼ s0ftðtþDtÞflðlf Þfvð
_lmÞ ð8Þ

where

ftðtÞ ¼

n1, if tot0

n1þðn2�n1Þhtðt,t0Þ, if t0otot1

n1þðn2�n1Þhtðt1,t0Þ�½ðn2�n1Þhtðt1,t0Þ�htðt,t1Þ, if t4t1

8><
>:

ð9Þ

htðti,tbÞ ¼ f1�exp½�SUðti�tbÞ�g, ð10Þ

is the muscle activation function;

flð
tlf Þ ¼

0, if tlf =lopt o0:4

9ðtlf =lopt�0:4Þ2, if 0:4r tlf =lopt o0:6

1�4ð1�tl f =loptÞ
2, if 0:6r tlf =lopt o1:4

9ðtlf =lopt�1:6Þ2, if 1:4r tlf =lopt o1:6

0, if tlf =lopt Z1:6
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is the muscle stress–stretch function and

fvð
_lmÞ ¼

1� _lm= _l
min

m

1þkc
_lm= _l
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m
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is the muscle stress–velocity function.
In these definitions, s0 is the maximum isometric stress, n1 is

the activation level before and after the activation, n2 is the
activation level during the activation, t0 is the activation time, t1 is
the deactivation time, S is the exponential factor, lopt is the
optimal fibre stretch at which the sarcomere reaches its optimal
length, kc and ke are the shape parameters of the hyperbolic
curves, d is the offset of the eccentric function, _lm is the stretch
rate in CE and _l

min

m is the minimum stretch rate.
Eq. (6) contains one unknown, namely Dls, and this can be

solved by setting up a non-linear equation utilizing the stress
relationship between the CE and the SEE (Tang et al., 2009).

The stress in the PE is expressed as

tþDtsp ¼ s0fPEð
tþDtlf Þ ð13Þ

where

fPEð
tþDtl f Þ ¼

AðtþDtlf�1Þ, if tþDtl f 41

0, otherwise

(
ð14Þ

and A is a material parameter.

2.3. Isochoric viscous strain energy function cv

The viscous response of the material is assumed to be provided
by the matrix and muscle fibres. The formation, which is used by
Limbert and Middleton (2004) and Zhurov et al. (2007) for viscous
contribution, is employed here

cv
isoðI1,J2,I4,J5Þ ¼cv

mðI1,J2Þþc
v
f ðI4,J5Þ ð15Þ

with

cv
mðI1,J2Þ ¼ Z1ðI1�3ÞJ2 ð16Þ
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Fig. 1. Simplified representation of a skeletal muscle.
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