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Abstract

In this paper we develop a lattice Boltzmann algorithm to simulate red blood cell (RBC) behavior in shear flows. The immersed
boundary method is employed to incorporate the fluid-membrane interaction between the flow field and deformable cells. The cell
membrane is treated as a neo-Hookean viscoelastic material and a Morse potential is adopted to model the intercellular interaction.
Utilizing the available mechanical properties of RBCs, multiple cells have been studied in shear flows using a two-dimensional
approximation. These cells aggregate and form a rouleau under the action of intercellular interaction. The equilibrium configuration is
related to the interaction strength. The end cells exhibit concave shapes under weak interaction and convex shapes under strong
interaction. In shear flows, such a rouleau-like aggregate will rotate or be separated, depending on the relative strengths of the
intercellular interaction and hydrodynamic viscous forces. These behaviors are qualitatively similar to experimental observations and

show the potential of this numerical scheme for future studies of blood flow in microvessels.
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1. Introduction

Red blood cells (RBCs) are an important component
in blood because of their large number density
(~5 x 10° /mm?) and their crucial role in oxygen transport.
Typically, a human RBC has a biconcave shape of ~8 um
in diameter and ~2pum in thickness. The interior fluid
(cytoplasm) has a viscosity of 6 cP, which is about 5 times
of that of the suspending plasma (~1.2cP). The cell
membrane is highly deformable so that RBCs can pass
through capillaries of as small as 4 um inner diameter with
large deformation (Popel and Johnson, 2005; Mchedlishvili
and Maeda, 2001). RBCs can also aggregate and form one-
dimensional stacks-of-coins-like rouleaux or three-dimen-
sional aggregates (Popel and Johnson, 2005; Stoltz et al.,
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1999; Baumler et al., 1999). The process is reversible and
the rouleaux and aggregates can be broken by, for example,
increasing the flow shear rate. This phenomenon is
particularly important in microcirculation, since such
rouleaux or aggregates can dramatically influence blood
flow in microvessels. However, the underlying mechanism
of RBC aggregation is not yet clear. Currently, there exist
two theoretical descriptions of this process: the bridging
model and the depletion model (Popel and Johnson, 2005;
Baumler et al., 1999). The former assumes that macro-
molecules, such as fibrinogen or dextran, can adhere onto
the adjacent RBC surfaces and bridge them together
(Merill et al., 1966; Brooks, 1973; Chien and Jan, 1973a).
The depletion model attributes the RBC aggregation
to a polymer depletion layer between RBC surfaces,
which is accompanied by a decrease of the osmotic pressure
(Baumler and Donath, 1987; Evans and Needham, 1988).
Detailed discussions of these two models can be
found elsewhere (see, for example, a review by Baumler
et al., 1999).
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The nature of blood flow changes greatly with the vessel
diameter. In vessels larger than 200 um, the blood flow can
be accurately modeled as a homogeneous fluid. However,
in arterioles and venules smaller than 25um, and also in
capillaries with diameter of 4-10 um, the RBCs have to be
treated as discrete fluid capsules suspended in the plasma.
Significant efforts have been devoted to numerically study
the RBC behaviors in various flow situations. For example,
Pozrikidis and coworkers (1995,2001,2003) have employed
the boundary integral method for Stokes flows to
investigate RBC deformation and motion in shear and
channel flows; Eggleton and Popel (1998) have combined
the immersed boundary method (IBM) (Peskin, 1977) with
a finite element treatment of the RBC membrane to
simulate large three-dimensional RBC deformations in
shear flow. Recently, a lattice Boltzmann approach has
also been adopted for RBC flows in microvessels, where the
RBCs were represented as rigid rods in two dimensions
(Migliorini et al., 2002; Sun et al., 2003; Sun and Munn,
2005). Bagchi (2007) has simulated a large RBC population
in vessels of size 20-300 um. However, RBC aggregation
was not considered in these studies. Liu et al. (2004)
modeled the intercellular interaction through a Morse
potential, thus accounting for RBC aggregation. The cell
membrane was represented by elastic elements. Bagchi et
al. (2005) have extended the IBM approach of Eggleton
and Popel (1998) to two-cell systems and introduced the
intercellular interaction according to a ligand-receptor
binding model. Chung et al. (2006) have utilized the
theoretical formulation of depletion energy proposed by
Neu and Meiselman (2002) to study two rigid elliptical
particles in a channel flow. Sun and Munn (2006) have also
improved their lattice Boltzmann model by including an
interaction force between rigid RBCs.

In this paper, we develop a two-dimensional lattice
Boltzmann scheme to simulate multiple deformable RBCs
in shear flow. The lattice Boltzmann method (LBM) was
chosen to solve the incompressible fluid field for its ability
to deal with complex boundary conditions and its
advantage for parallel computation (Succi, 2001), both of
which could be valuable in our future studies. Different
from previous LBM studies of RBC flows (Migliorini et al.,
2002; Sun et al., 2003; Sun and Munn, 2005), here we
modeled the cells as deformable fluid capsules and hence
the membrane mechanics and cytoplasm viscosity could be
considered. IBM was also utilized to incorporate the
fluid-membrane interaction, and a Morse potential to
describe the intercellular interaction. Detailed theory
and formulations will be given in the next section. The
algorithm and program have been validated by com-
paring simulation results with theoretical predictions, and
excellent agreement was found. Finally, simulations of
multiple deformable RBCs were conducted and the
results demonstrated the effects of intercellular interactions
and shear rate on the RBC rheological behaviors,
which are also in qualitative agreement with experimental
observations.

2. Theory and methods

Here we employ the LBM (Zhang and Kwok, 2005; Zhang et al., 2004)
to solve the flow field and the IBM (Peskin, 1977) to incorporate the
fluid-membrane interaction. The LBM approach is advantageous for
parallel computations due to its local dynamics and can be relatively easily
applied to systems with complex boundaries (Succi, 2001). Detailed
descriptions of these methods are available elsewhere (also see the
Supplemental Materials).

2.1. RBC membrane mechanics

Experiments have shown that the RBC membrane is a neo-Hookean,
highly deformable viscoelastic material (Hochmuth and Waugh, 1987).
Also it exhibits finite bending resistance that becomes more profound in
regions with large curvature (Evans, 1983). For the two-dimensional RBC
model in this work, according to Bagchi et al. (2005), the neo-Hookean
elastic component of membrane stress can be expressed as
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where E is the membrane shear modulus and ¢ is the stretch ratio. To
incorporate the membrane viscous effect, an extra term should be added to
the stress expression as (Evans and Hochmuth, 1976; Mills et al., 2004;
Bagchi et al., 2005)
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where p,, is the membrane viscosity. In addition, the bending resistance
can also be represented by relating the membrane curvature change to the
membrane stress with (Pozrikidis, 2001; Bagchi et al., 2005)
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where E}, is the bending modulus and x and x, are, respectively, the
instantaneous and initial stress-free membrane curvatures. / is a measure
of the arc length along the membrane surface. Therefore, the total
membrane stress T induced due to the cell deformation is a sum of the
three terms discussed above:

T = (T + Tt + Ton. @)

Here, t and n are the local tangential and normal directions on the
membrane.

2.2. Intercellular interactions

The physiological and pathological importance of RBC aggregation
has been realized and extensive experimental investigations have been
performed (Popel and Johnson, 2005; Stoltz et al., 1999; Baumler et al.,
1999; Kim et al., 2006; Kounov and Petrov, 1999; Chien et al., 1977);
however, the underlying mechanisms of the RBC aggregation are still
subjects of investigation. Both the bridging and the depletion models can
describe certain aggregation phenomena; however, they fail to explain
some specific observations (Baumler et al., 1999; Armstrong et al., 1999).
In general, it can be assumed that the attractive interaction between RBC
surfaces would occur when they are close, and repulsive interaction would
occur when the separation distance is sufficiently small. The repulsive
interaction includes the steric forces due to the glycocalyx and electrostatic
repulsion from the negative charges on RBC surfaces (Liu et al., 2004). In
previous studies, to model such intercellular interactions, Bagchi et al.
(2005) adopted the formalism of a ligand-receptor dynamics according to
the bridging model. However, this description involves a number of
parameters whose values are not available from experiments. On the other
hand, Chung et al. (2006) employed a mathematical description of the
depletion model proposed by Neu and Meiselman (2002). It was noticed
that such a description results in a constant (instead of a decaying)
attractive force at large separation, which is not physically realistic.
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