

the Journal of Nolecular Diagnostics

jmd.amjpathol.org

Clinical Validation of Copy Number Variant Detection from Targeted Next-Generation Sequencing Panels

Jennifer Kerkhof,* Laila C. Schenkel,[†] Jack Reilly,* Sheri McRobbie,* Erfan Aref-Eshghi,[†] Alan Stuart,* C. Anthony Rupar,^{†‡} Paul Adams,[§] Robert A. Hegele,^{¶|} Hanxin Lin,*[†] David Rodenhiser,**^{††‡‡§§} Joan Knoll,*[†] Peter J. Ainsworth,*[†] and Bekim Sadikovic*[†]

From the Molecular Genetics Laboratory* and the Biochemical Genetics Laboratory,[‡] Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario; the Departments of Pathology and Laboratory Medicine,[†] Gastroenterology,[§] Medicine,[¶] Biochemistry,** Paediatrics,^{††} and Oncology^{‡‡} and the Robarts Research Institute,^{||} Western University, London, Ontario; and the London Regional Cancer Center Program,^{§§} the Children's Health Research Institute, London, Ontario, Canada

Accepted for publication July 31, 2017.

Address correspondence to Bekim Sadikovic, Ph.D., DABMGG, FACMG, Department of Pathology and Laboratory Medicine, Victoria Hospital, London Health Sciences Centre, 800 Commissioner's Rd. E., B10-104, London, ON, Canada N6A 5W9. E-mail: bekim. sadikovic@lhsc.on.ca. Next-generation sequencing (NGS) technology has rapidly replaced Sanger sequencing in the assessment of sequence variations in clinical genetics laboratories. One major limitation of current NGS approaches is the ability to detect copy number variations (CNVs) approximately >50 bp. Because these represent a major mutational burden in many genetic disorders, parallel CNV assessment using alternate supplemental methods, along with the NGS analysis, is normally required, resulting in increased labor, costs, and turnaround times. The objective of this study was to clinically validate a novel CNV detection algorithm using targeted clinical NGS gene panel data. We have applied this approach in a retrospective cohort of 391 samples and a prospective cohort of 2375 samples and found a 100% sensitivity (95% CI, 89% -100%) for 37 unique events and a high degree of specificity to detect CNVs across nine distinct targeted NGS gene panels. This NGS CNV pipeline enables stand-alone first-tier assessment for CNV and sequence variants in a clinical laboratory setting, dispensing with the need for parallel CNV analysis using classic techniques, such as microarray, long-range PCR, or multiplex ligation—dependent probe amplification. This NGS CNV pipeline can also be applied to the assessment of complex genomic regions, including pseudogenic DNA sequences, such as the *PMS2CL* gene, and to mitochondrial genome heteroplasmy detection. (*J Mol Diagn 2017, 19: 905—920; http://dx.doi.org/10.1016/j.jmoldx.2017.07.004*)

Potentially deleterious changes in DNA sequences involve single-nucleotide polymorphisms (SNPs) and/or structural variants of rearrangements that affect >50 bp, including small insertions and deletions, copy number variations (CNVs), and large structural variants. The ability to detect CNVs with a high degree of sensitivity and specificity is fundamental to a comprehensive gene analysis by a modern clinical laboratory. Inherited and somatically acquired CNVs account for a substantial proportion of genetic variation in the human genome and have been associated with a significant number of human disorders.^{1–5} By definition, CNV refers to an intermediate scale structural variant, with copy number changes ranging from 1 Kb to 5 Mb of DNA⁶; however, clinically significant structural variants can range

from nucleotide-level insertions/deletions to entire chromosomes and are therefore included in our definition of a CNV. Large deletions and duplications that involve dosagesensitive developmental genes are also known to be related to the presentation of well-characterized microdeletion and microduplication syndromes, such as Charcot-Marie-Tooth and DiGeorge syndromes.⁶

Several approaches have been developed for CNV assessment, including fluorescent *in situ* hybridization,⁷ multiplex ligation—dependent probe amplification (MLPA),⁸ comparative

Supported by the London Health Sciences Molecular Genetics Laboratory research and development fund.

Disclosures: None declared.

Respective delle	5		
Assorted gene	panel		
ACADM	MECP2	RET	TP53
GJB2	MEN1	SCN4A	TTR
GJB6	<i>NOTCH3</i>	SPTLC1	
BRCA*			
BRCA1	BRCA2		
Cancer			
АРС	CDH1	MSH6	RAD51D
ATM	CDK4	MUTYH	SMAD4
BARD1	CDKN2A	NBN	STK11
BMPR1A	СНЕК2	PALB2	TP53
BRCA1	EPCAM	PMS2	
BRCA2	MLH1	PTEN	
BRIP1	MSH2	RAD51C	
Charcot-Marie-1	ooth syndrome		
EGR2	HSPB1	MPZ	SH3TC2
FIG4	HSPB8	NEFL	TRPV4
GARS	ITTAF	PMP22	
GDAP1	I MNA	PRX	
GJB1	MFN2	RABZA	
Dyslipidemia			
ARCA1	CAV1	INIR	ΡΔΧΆ
ARCCR	CEL		PCSKA
ABCC5	CETD		
ABCCS		LLT	DTK2D1
ΑΔΕΘΟ		ITDA	DI TN1
ΑΔΙΓΟΟ ΛCDΛΤ2	ERN1		
AUT ATZ AKT2	FTO		POMC
ANICOTI 2	CCV		DDADC
ANOFILS		LIFG IME1	
AFUAI	GFD1 CDTUDD1		F SMDO DTDE
AFUAS			FINF DVDC
AFUD			
APULZ			SARID SCADD1
APOLS	TNC	LFL MC2D	SCARDI STADI
AFUE	1NS VCN711	MC/P	JIAF I TPC1 D/
	KCNJE	MC4R MTTD	IBCID4
DLN			USFI
DSULZ CEADO	NLFII LCAT		WKN ZMDCTE2/
COARZ	LLAT	USBPLIU	ZMFSIEZ4
chiches	CATM		CONOA
ALDH/AI	GAIM	NECAPI	SCN8A
AMT	GLDC	NEU1	SCN9A
ARX	GOSR2	NHLRC1	SLC2A1
ASAH1	GRIN2A	NRXN1	SLC6A8
ATP1A2	GRIN2B	PCDH19	SLC9A6
ATP1A3	HCN1	PHGDH	SPTAN1
CDKL5	KCNC1	PLCB1	STXBP1
CERS1	KCNJ10	PNKP	SUOX
CHD2	KCNJ11	PNPO	SYNGAP1
CHRNA7	KCNQ2	POLG	TBC1D24
CNTNAP2	KCNQ3	PRICKLE2	TCF4
CSTB	KCNT1	PRRT2	TSC1
DNM1	KCTD7	PSAT1	TSC2
DOCK7	LMNB2	PSPH	UBE3A
EPM2A	MBD5	SCARB2	ZEB2
FOLR1	MECP2	SCN1A	
FOXG1	MEF2C	SCN1B	
	-		

Table 1Next-GenerationSequencingTargetPanelsandRespective Genes

	maea)		
GAMT	MOCS1	SCN2A	
Hyperferritin	nemia		
ALAS2	FTH1	HFE2	STEAP3
B2M	FTL	SEC23B	TF
CDAN1	HAMP	SLC25A38	TFR2
СР	HFE	SLC40A1	
Lysosomal st	torage/urea cycle	disorder	
AGA	CTSK	GUSB	NEU1
ARG1	DNAJC5	HEXA	NPC1
ARSA	FUCA1	HEXB	NPC2
ARSB	GAA	HGSNAT	ОТС
ASAH1	GALC	HYAL1	PPT1
ASL	GALNS	IDS	PSAP
ASS1	GBA	IDUA	SGSH
CA5A	GLA	LAMP2	SLC17A5
CLN3	GLB1	LIPA	SLC24A2
CLN5	GLUD1	MAN2B1	SLC25A13
CLN6	GLUL	MANBA	<i>SLC25A15</i>
CLN8	GM2A	MCOLN1	SLC7A7
CPS1	GNPTAB	MFSD8	SMPD1
CTNS	GNPTG	NAGA	SUMF1
CTSA	GNS	NAGLU	TPP1
CTSD	GRN	NAGS	
Mitochondria	al DNA		
MT-ATP6	MT-ND4L	MT-TI	MT-TS2
MT-ATP8	MT-ND5	MT-TK	MT-TT
MT-CO1	MT-ND6	MT-TL1	MT-TV
MT-CO2	MT-TA	MT-TL2	MT-TW
МТ-СОЗ	MT-TC	MT-TM	MT-TY
МТ-СҮВ	MT-TD	MT-TN	MT-RNR1
MT-ND1	MT-TE	MT-TP	MT-RNR2
MT-ND2	MT-TF	MT-TQ	
MT-ND3	MT-TG	MT-TR	
MT-ND4	MT-TH	MT-TS1	

Table 1 (continued)

*BRCA panel description given by Schenkel et al.¹²

genomic hybridization microarrays, and SNP arrays.⁹ Although large chromosomal and segmental rearrangements are detectable by fluorescent in situ hybridization, most CNVs identified in the human genome are below the resolution of current fluorescent in situ hybridization technology. To date, MLPA and microarray-based technologies have been the most reliable and effective methods for discovering copy number alterations. Although both comparative genomic hybridization and SNP array techniques provide a genome-wide CNV screening capability, and SNP arrays also allow allelotyping, generally small deletions/duplications need confirmation by an alternate method or are not detectable.¹⁰ MLPA is a semiguantitative PCR-based technique that can detect deletions and duplications for up to 50 genetic loci in one assay.¹¹ Because of its low cost, high sensitivity and specificity, and medium throughput, the MLPA technique has become the gold standard diagnostic tool. However, drawbacks of MLPA include inability to provide information regarding the exact location of a duplicated sequence or its orientation, lack of sensitivity for regions not directly encompassed by the

Download English Version:

https://daneshyari.com/en/article/8733460

Download Persian Version:

https://daneshyari.com/article/8733460

Daneshyari.com