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a b s t r a c t

We examined the performance of several generalized linear fixed- and mixed-effects individual-tree
mortality models for Douglas-fir stands in the Pacific Northwest. The mixed-effects models accounted
for sampling and study design overdispersion. Inclusion of a random intercept term reduced model bias
by 88% relative to the fixed-effects model; however, model discrimination did not substantially differ. An
uninformed version of the mixed model that used only its fixed effects parameters produced predicted
mortality values that exceeded the fixed-effects model bias by 31%. Overall, we did not find compelling
evidence to suggest that the mixed models fit our data better than the fixed-effects model. In particular,
the mixed models produced fixed-effects parameter estimates that predicted unreasonably high mortal-
ity rates for trees approaching 1 m in diameter at breast height.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Tree mortality is a critical component of stand growth and yield
models. It is also highly variable and difficult to predict (Lee, 1971;
Dobbertin and Biging, 1998). The nature of data collected to model
and quantify mortality, however, may challenge the assumptions
inherent in statistical tools used to estimate mortality. In this study
we examine a generalized linear mixed-effects method to account
for data structure and lack of independence.

Lee (1971) and Staebler (1953) described tree mortality as
either regular or irregular. Irregular mortality includes death
occurring from insects, disease, fire, snow damage, and wind. This
type of mortality typically is episodic, brief, and difficult to predict.
Regular mortality is more predictable, and includes influences such
as competition for light, moisture, and nutrients. As stands become
more crowded, a degree of mortality usually occurs. Trees may die
for several possibly co-occurring reasons: suppression where
stands are differentiating, weakening due to insects and disease,
and buckling where stems become tall and thin (Oliver and Larson,
1996). Trees in stands characterized by regular mortality exhibit a
preponderance of mortality amongst smaller-diameter individuals
that are over-topped by neighbors (Peet and Christensen, 1987).
Mortality rates become low for established trees until larger diam-
eters are reached and the mortality rate increases again (Buchman
et al., 1983; Harcombe, 1987; Monserud and Sterba, 1999).

Although both classes of mortality may affect stands, only single-
tree regular mortality models are routinely incorporated in most
growth and yield simulators such as FVS (Dixon, 2011) and ORGA-
NON (Hann, 2011).

Single-tree mortality models have been developed using a vari-
ety of data and approaches. Logistic models are common for data
sets where revisit frequency consists of equal-length time periods
(Hamilton, 1986; Bigler and Bugmann, 2003; Jutras et al., 2003;
Moore et al., 2004; Adame et al., 2010). However, if the time peri-
ods differ, a common solution is to use the logistic model but insert
time as a power upon survival probabilities or use a complimen-
tary log–log link function (e.g., Monserud, 1976; Eid and Tuhus,
2001; Moore et al., 2004; Temesgen and Mitchell, 2005; Fortin
et al., 2008). For stands where remeasurement occurred multiple
times, researchers either avoid pseudoreplication at the level of
the tree by omitting all but the last remeasurement for each tree
(Hamilton, 1986) or include the remeasurement information
(Temesgen and Mitchell, 2005; Fortin et al., 2008).

Data used in these analyses are from nested samples, with the
highest level referred to as installations. Each installation contains
one or more plots; each plot contains many trees with repeated
measurements. Analyses performed on individual tree mortality
data has recently begun to account for the structured nature and
non-independence by using generalized linear mixed-effects mod-
els. Logistic models by Adame et al. (2010) and Jutras et al. (2003)
include random intercepts for study plots or stands. A complimen-
tary log–log model by Fortin et al. (2008) included an adjusted
intercept with random effects for study plot and specific time
interval nested within plot.

Prediction performance for nonlinear mixed-effects models may
be improved (less bias and greater precision) when compared to
corresponding fixed-effects models conditional on the availability
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of previous information on the subject; however, in absence of ran-
dom-effects information, predictions using just the fixed portions of
the parameterization from the nonlinear mixed-effects model exhi-
bit greater bias and less precision than even the original fixed-ef-
fects model (Monleon, 2003; Temesgen et al., 2008; Garber et al.,
2009). Setting the random effect to zero follows from prediction
theory only for linear mixed models, but it has a different meaning
for nonlinear models. Consider a linear mixed model where X is a
(n � p) design matrix where n is the number of observations and p
is the number of fixed-effects parameters, ß is a vector of linear
slope values, Z is a (n � r) design matrix where r is the number of
random effects parameters, c represents G-sided random effects
parameterization, and e is the random error:

y ¼ Xbþ Zcþ e; where EðcÞ ¼ EðeÞ ¼ 0

Then, conditional on the random effect, and because the expec-
tation is a linear operator,

EðyjcÞ ¼ Xbþ Zc

Unconditionally,

EðyÞ ¼ EðXbþ Zcþ eÞ ¼ Xbþ ZEðcÞ ¼ Xb

Thus, in a linear model, the unconditional expectation can be
calculated from the conditional expectation by setting the random
effect to zero:

EðyÞ ¼ Eðyjc ¼ 0Þ

For a nonlinear model, this is not the case. The nonlinear mixed
model can be written as:

Y ¼ f ðX; b; Z; cÞ þ e; where EðcÞ ¼ EðeÞ ¼ 0

Conditional on installation:

EðyjcÞ ¼ f ðX; b; Z; cÞ

Unconditionally:

EðyÞ ¼ E½EðyjcÞ� ¼ E½f ðX; b; Z; c�

Unlike linear models, for nonlinear models, the unconditional
model is not the same as the conditional model with the random
effects set to zero:

E(y) – E(y|c = 0) because E[f(X, b, Z, c)] =
R

f(X, b, Z, c)dl(c) – f(X,
b, Z, c = 0), where l(c) is the distribution function of c.

The model for E(y) is known as the population-average model
and the model for E(y|c) is known as the subject-specific model.
For nonlinear mixed models, those versions are different. Choosing
which type of model and inference is appropriate for each objective
is fundamental when dealing with nonlinear mixed models. For a
tree from a completely new stand that does not have information
to estimate the random effects and, therefore, condition on the
stand effect, the proper model is a population average model.
When using the subject-specific model with c = 0 (i.e., the sub-
ject-specific model for the average stand), prediction performance
is expected to decline. Again, in linear mixed models this is not an
issue, because setting c = 0 yields the population-average model.

Forest management requires models that are useful beyond their
study areas. Generalized or nonlinear mixed-effects models can in-
crease bias when applied to novel data (e.g., Robinson and Wykoff,
2004). Mixed models require estimated information about a hierar-
chical level that may be unknown for novel data sets. One technique
to extend generalized linear or nonlinear mixed-effect model appli-
cability is to utilize minimal data from new stands for estimating
the random effects parameters. This allows the application of non-
linear mixed effects models beyond their original data frames (Mon-
leon, 2003; Temesgen et al., 2008; Garber et al., 2009). However, this
technique may be limited by the response variable type. In those
studies it worked for tree height, a continuous static variable. Our

study’s response variable, individual tree mortality, is rare, bino-
mial, dynamic, and requires several years of data collection to ob-
serve. Thus, incorporating subsample information from new plots
to inform mixed-effects model predictions is generally unfeasible.

The objectives of this study are to (1) determine whether a gen-
eralized linear mixed model fit to repeatedly remeasured Douglas-
fir (Pseudotsuga menziesii [Mirb.]) trees can improve mortality esti-
mation over a previous nonlinear estimation approach (Hann et al.,
2003, 2006), and (2) compare the predictive abilities of mixed-ef-
fects models to nonlinear least squares estimation in the presence
and absence of random effects information. We expect biased pre-
dictions from the mixed model that lacks random effects informa-
tion, but examine the degree by which those results are useful
relative to the nonlinear least squares predictions. Taken together,
our goal is to examine how well models met our objectives and
whether we produce a model that is useful for current Douglas-
fir growth and yield simulators.

2. Methods

2.1. Study area and data acquisition

Data used in this analysis were obtained from randomly located
installations on nine land ownerships and represent a subset of
data described in Hann et al. (2003, 2006). One of the uses of the
overall data collection effort was to calibrate the ORGANON stand
development model (Hann, 2011) for intensively managed Doug-
las-fir in the Pacific Northwest region of the USA and Canada. What
follows is a description of the subsetted data. The data were from
304 permanent sample installations from Southwest British
Columbia, Western Washington, and Northwestern Oregon. The
820 plots within those installations contained 195,795 revisit data
collected from 70,720 Douglas-fir trees. Trees were revisited one to
18 times over the course of data collection. Time between revisits
was not equal among trees or plots, and varied from 3 to 7 years
(median = 5 years). The fixed-area plots varied in size from 0.041
to 0.486 ha (mean = 0.069). The average breast height age was
27.8 years and ranged from 3 to 108 years. Plots included in this
study were not subject to thinning or fertilization experimental
treatments.

We further reduced the data set according to two criteria. The
first criterion only permitted data from installations that had two
or more plots. This criterion was necessary for creating mixed-ef-
fects mortality predictions (described below), and it removed
12,616 trees, 38,314 observations, and 67 single-plot installations
from the data set. The second criterion was that we retained only
trees with DBH <101.6 cm. We removed larger-DBH trees to allay
model convergence issues likely arising from a paucity of mortality
information leading to a lack of fit at that extreme. This removed
eight observations and five trees (<0.01% of data) and permitted
model convergence. The resulting data set included 157,473 revis-
its of 58,099 trees in 753 plots located within 201 installations.

2.2. Mortality estimation

We based this analysis on a general equation of mortality given
differing plot revisit schedules as described by Hann et al. (2006):

PM ¼ 1:0� ½1:0þ e�ðXbÞ��PLEN þ ePM ð1Þ

where PLEN is the length of the growth period in 5-year increments
(i.e., length of a growth period in years divided by 5), PM is the 5-
year mortality rate, and ePM is the random error on PM. The re-
sponse variable distribution is y � Bernoulli (p) where the observed
response was y and p is the corresponding response probability.
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