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a b s t r a c t

Highly anisotropic microtubules (MTs) immersed in cytosol are a central part of the cytoskeleton in

eukaryotic cells. The dynamic behaviors of an MT–cytosol system are of major interest in biomechanics

community. Such a solid–fluid system is characterized by a Reynolds number of the order 10�3 and a

slip ionic layer formed at the MT–cytosol interface. In view of these unique features, an orthotropic

shell-Stokes flow model with a slip boundary condition has been developed to explore the distinctive

dynamic behaviors of MTs in cytosol. Three types of motions have been identified, i.e., (a) undamped

and damped torsional vibration, (b) damped longitudinal vibration, and (c) overdamped bending and

radial motions. The exponentially decaying bending motion given by the present model is found to be in

qualitative agreement with the existing experimental observation [Felgner et al., 1996. Flexural rigidity

of microtubules measured with the use of optical tweezers, Journal of Cell Science 109, 509–516 ].

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Microtubules (MTs) (Fig. 1) are principle components of the
cytoskeleton in eukaryotic cells, which play an essential role in
providing mechanical rigidity, maintaining the shape of cells and
facilitating many important physiological processes (Ingber et al.,
1995; Nogales, 2000; Cotterill, 2002; Boal, 2002; Howard and
Hyman, 2003; Stamenovic, 2005; Watanabe et al., 2005). The
mechanics of MTs is a topic of numerous researches (Gittes et al.,
1993; Venier et al., 1994; Kurachi et al., 1995; Felgner et al., 1996;
dePablo et al., 2003), where MT vibration is of major interest
(Sirenko et al., 1996; Pokorny, 2003, 2004; Kasas et al., 2004;
Portet et al., 2005; Wang and Zhang, 2008). In particular, since
MTs are immersed in cytosol, the vibration of MTs in a fluid has
attracted attention in the last decade (Sirenko et al., 1996;
Pokorny, 2003 2004). In studying the longitudinal vibration,
Pokorny (2003, 2004) revealed that an ionic charge layer on the
surfaces of MTs minimizes the viscous effect of the cytosol and
allows slide between MTs and cytosol. The more comprehensive
investigation has been carried out by Sirenko et al. (1996), where
three axisymmetric acoustic modes and an infinite set of non-
axisymmetric modes have been obtained. In this study, an
isotropic membrane shell model is used for MTs and the fluid
around MTs is tacitly assumed to be an ideal fluid with an
infinitely large Reynolds number. However, such a model is
oversimplified for anisotropic MTs with bending resistance.
Furthermore, as will be shown later, the nanoscale radius of MTs
gives a Reynolds number of the surrounding fluid three orders of

magnitude smaller than unity. The ideal fluid model is thus not
valid for an MT–fluid system. It follows that a more realistic model
for an MT–cytosol system is needed to give a reliable description
of the dynamic behaviors of MTs immerged in cytosol.

Recently, an orthotropic shell model (Wang et al., 2006a,b;
Wang and Zhang, 2008) has been developed to study the
mechanical behaviors of MTs. A good agreement has been
achieved between this shell model, available discrete models
and experiments. Motivated by its valid applications, the present
paper will further extend the model to the vibration analysis of an
MT–cytosol system. The motion of the cytosol will be modeled as
Stokes flow characterized by a small Reynolds number and the
free slip boundary condition will be specified on the MT surface.

Based on this orthotropic shell-Stokes flow model, the
governing equations for the vibration of MTs in cytosol are
derived in Section 2. In Section 3, the phonon-dispersion relations
are predicted for MTs immersed in cytosol and compared with
those of free MTs. Here the major attention is focused on the
damping effect of cytosol on various MT motions. The major
conclusions are summarized in Section 4.

2. The orthotropic shell-Stokes flow model

In this section, we shall develop an orthotropic shell-Stokes
flow model for the dynamic behaviors of MTs in cytosol.

2.1. Dynamic equations of MTs

An orthotropic shell model developed for the free vibration
(Wang et al., 2006a; Wang and Zhang, 2008) and elastic buckling
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(Wang et al., 2006b) of MTs will be further used to study the
dynamic behaviors of MTs in cytosol. Previous studies (Pokorny,
2003, 2004) indicated that the viscous force on MTs is minimized
by a slip ionic layer formed at the MT–cytosol interface (Fig. 1).
The friction acting on MT surface is thus neglected in the
present study. On the other hand, the inner radial pressure
Prr

i and the outer radial pressure Prr
o of MTs due to cytosol have

to be considered. The dynamic equations of MTs in cytosol
can then be written as follows (Wang et al., 2006a; Wang and
Zhang, 2008):
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where x and y are axial and circumferential angular coordinates
(Fig. 1); u, v and w are axial, circumferential and radial
displacements; t is the time; r is the mass density, h is the
thickness and R is the average radius of MTs. In addition, vx and vy
are Poisson ratios in longitudinal and circumferential directions.
(Kx, Ky) and (Dx, Dy) represent the in-plane and bending stiffnesses
in longitudinal and circumferential directions, and (Kxy, Dxy) are
stiffnesses in shear (Appendix A1). Here we consider MTs usually
of a large length-to-diameter aspect ratio as infinitely long shells.

The solution of Eq. (1) then reads (Sirenko et al., 1996)
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where U, V and W represent the vibration amplitudes of MTs in
longitudinal, circumferential and radial directions, kx is the wave
vector (nm�1) along the longitudinal direction, n is the circumfer-
ential wave number and the real part of o (Re o) gives the angular
frequency.

2.2. Dynamic equations of cytosol motion

The radius R of MTs is around 10 nm and their free vibration
frequency f with ko0.1 (k ¼ Rkx) is of the order 0.1 GHz (Wang
et al., 2006a). If the displacement amplitude Amp of MT vibration
is 10 times smaller than MT radius, the velocity of the cytosol flow
can be roughly estimated as ~v ¼ 4 Amp� f ¼ 0.4 m/s. Since water
is a major part (70%) of cytosol, its kinematic viscosity
Z ¼ 1.004�10�6 m2/s (at 20 1C) should be close to that of cytosol.
Thus, the Reynolds number of cytosol Re ¼ vR/Z is of the order
4.0�10�3. It follows that the motion of cytosol can be modeled as
Stokes flow, i.e., an incompressible fluid with small Reynolds
number (o1), whose governing equations are as follows (Happel
and Brenner, 1973):

r d ~vf ¼ 0 and rpf ¼ mfr
2 ~vf (3)

where ~vf denotes the velocity, pf the pressure and mf the
dynamical viscosity of cytosol.

The continuity condition requires that cytosol moves radially
with the same velocity as that of MTs at r ¼ R. However, due to the
existence of a very thin slip ionic layer on MT surfaces, MTs and
cytosol move independently along the longitudinal and circum-
ferential directions. In fact, as there is no friction between the MTs
and the thin slip layer with negligible momentum and angular
momentum of inertia, the viscous force between the cytosol and
the slip ionic layer must also be zero. It follows that the tangential
velocities of cytosol should vanish at r ¼ R. Thus, the boundary
conditions of cytosol at r ¼ R are

ð ~vf Þx ¼ 0; ð ~vf Þy ¼ 0 and ð ~vf Þr ¼ �
@w

@t
(4)

By using the governing Equation (3) and boundary condition
(4), the radial pressures Prr

i and Prr
o of cytosol at the inner and

outer surfaces of MTs can be expressed as
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The derivation of Eq. (5) and the form of Ai and A0 can be found
in Appendix B.

2.3. Dynamic analysis of MTs in cytosol

By substituting Eqs. (2) and (5) into (1), the original partial
differential can be transformed into the following three algebraic
equations:
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Fig. 1. A schematic picture of an MT immerged in cytosol with a slip ionic layer at

the MT–cytosol interface. a and b are tubulin dimers that form MTs.
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