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A biomechanical model of artery buckling
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Abstract

The stability of arteries under blood pressure load is essential to the maintenance of normal arterial function and the loss of stability

can lead to tortuosity and kinking that are associated with significant clinical complications. However, mechanical analysis of arterial

bent buckling is lacking. To address this issue, this paper presents a biomechanical model of arterial buckling. Using an elastic cylindrical

arterial model, the mechanical equations for arterial buckling were developed and the critical buckling pressure was found to be a

function of the wall stiffness (Young’s modulus), arterial radius, length, wall thickness, and the axial strain. Both the model equations

and experimental results demonstrated that the critical pressure is related to the axial strain. Arteries may buckle and become tortuous

due to reduced (subphysiological) axial strain, hypertensive pressure, and a weakened wall. These results are in accordance with, and

provide a possible explanation to the clinical observations that hypertension and aging are the risk factors for arterial tortuosity and

kinking. The current model is also applicable to veins and ureters.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Arteries are subjected to significant mechanical loads
from internal blood flow and contiguous tissue tethering
(Han and Fung, 1995; Nichols and O’Rourke, 1998). Both
mechanical strength and stability are essential to normal
arterial function. The study of arterial mechanics has
established a rich body of knowledge concerning arterial
wall constitutive equations, wall stress, strength, and the
adaptation of the arterial wall in response to hemodynamic
(pressure and flow) changes (Fung, 1993; Langille, 1996;
Ku, 1997; Nichols and O’Rourke 1998; Fisher et al., 2001).
However, little research has been done to address the
mechanical stability of the arteries. Although the cross-
sectional collapse of arteries and veins due to low blood
pressure has been examined and collapsible tube models of
arteries and veins have been developed (Aoki and Ku,
1993; Drzewiecki et al., 1997; Fung 1997; Tang et al.,

2001), the biomechanical model for arterial bent buckling
is lacking.
On the other hand, arterial tortuosity or kinking often

occur in human internal carotid arteries or iliac arteries
with significant clinical complications (Metz et al., 1961;
Weibel and Fields, 1965; Pancera et al., 2000; Dawson
et al., 2002; Aleksic et al., 2004). For example, kinking of
the internal carotid artery can lead to stroke, vertigo,
syncopes, blackout, persistent tinnitus, and other cerebro-
vascular deficiencies (Weibel and Fields, 1965; Pancera
et al., 2000; Aleksic et al. 2004). Recent experimental
results showed that reduced axial tension leads to artery
tortuosity, suggesting that the tortuosity may be due to
mechanical buckling (Jackson et al., 2005). Therefore, it is
important to develop the theory and applicable equations
to predict the critical load for artery buckling.
Though arteries and engineering vessels, such as water

pipes and gas tanks, are all under internal pressure, their
axial loads are different: arteries are under significant axial
tension while engineering pressurized vessels are often
under axial compression. While the mechanical buckling of
pressurized engineering vessels has been studied extensively
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(Timoshenko and Gere, 1961; Flugge, 1973; Jones, 1994),
little has been done on the buckling of arteries.

The objectives of this study were to establish a
biomechanical model for arterial bent buckling, to
determine the critical buckling loads, and to determine
the effect of axial stretch on the critical load.

2. Methods

2.1. Mechanical model

Let us consider a simple case of an open-ended arterial segment with

pinned support at both ends (both ends are free to rotate but restricted from

lateral movement while one end is allowed to move axially). The artery is

modeled as linear-elastic, thin-walled, circular cylinders under internal

pressure p and axial (longitudinal) tension N with an axial elongation of

stretch ratio lz. Arterial radius, wall thickness, and length under the

pressure are designated as a, t, and L, respectively. All these parameters are

assumed to be constants along the artery segment. Instead of solving the

differential equations for shell buckling (Timoshenko and Gere, 1961;

Flugge, 1973; Kollar and Dulacska, 1984), we used a semi-inverse approach

to establish the arterial buckling equation. This approach uses assumed

deformation patterns to fit the boundary conditions and the equilibrium

equations to find the solution (Ugural and Fenster, 2003). Based on the

Euler column buckling theory (Gere, 2004) and our experimental

observations of arterial bent buckling patterns, we assumed that the artery

buckles into a sine shape. The central axis of the buckled artery deforms:

xc ¼ C sin
pz

L

� �
, (1)

where C is a constant and z is the coordinate in the axial direction (Fig. 1).

Accordingly, the displacement of the cylindrical arteries in the radial,

circumferential, and axial (longitudinal) directions are given by

u ¼ C cos j sin
pz

L

� �
,

v ¼ �C sin j sin
pz

L

� �
,

w ¼ �
pa

L
C cos j cos

pz

L

� �
þ ðlz � 1Þz, ð2Þ

wherein j is the polar angle of the point from the x-axis. The second term

in the third equation for w represents the axial elongation of the artery

due to the longitudinal tension that generated the stretch ratio lz. Thus,

the axial strain in the arterial wall generated by the buckling (bending) is

given by

�z ¼
@w

@z
¼

p2a

L2
C cos j sin

pz

L

� �
þ ðlz � 1Þ. (3)

In the buckled arteries, the internal pressure generates an uneven lateral

load that can be calculated based on the free-body diagram shown in

Fig. 2. While the horizontal resultant of pressure load is zero due to

symmetry, the vertical resultant equals to the integral of the vertical

projection of the pressure load along the circumference. Therefore, the

lateral load per unit length, q(z) produced by the internal pressure p is

qðzÞ ¼ pa

Z 2p

0

ð1þ �zÞ cos jdj. (4)

By substituting Eq. (3) into (4), integrating for dj, and re-arranging, we

have

qðzÞ ¼
pp3a2

L2
C sin

pz

L

� �
. (5)

The buckled arteries are under this distributed lateral load q(z), axial

tension N, and a restriction force Q0 at the ends as shown in Fig. 3. All the

loads applied to the artery are in equilibrium when the artery is buckled.

Therefore, the bending moment M(z) can be computed using the simple

beam theory through the following two approaches that should give the

same results.

First, the bending moment M(z) at axial location z can be determined

using the equilibrium equations for all the loads:

MðzÞ ¼ Q0z�NC sin
pz

L

� �
�

Z z

0

qðxÞdxðz� xÞ. (6)

Wherein the lateral reaction force Q0 caused by distributed load q(z) is

given by

Q0 ¼
1

2

Z L

0

qðzÞdz ¼
pp2a2

L
C. (7)
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Fig. 1. Schematics illustrating the deformations of a cylindrical artery

(top) buckled under internal pressure and axial tension (middle). The

radial and circumferential displacement of the wall, u and v, respectively,

are the corresponding projections of the lateral deflection xc of the

longitudinal central axis (bottom panel). The longitudinal axis is denoted

by the z-axis. The solid lines represent the deformed shapes and the dotted

lines represent the initial shapes.
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Fig. 2. Schematics showing a deformed segment of a buckled artery in the

lateral view (left) and the cross-sectional view (right).
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Fig. 3. The free-body diagram of a buckled artery with pin-supported

ends. Q0 represents the lateral reaction forces.
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