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Experimental measurements of the Poisson’s ratio in tendon and ligament tissue greatly exceed the

isotropic limit of 0.5. This is indicative of volume loss during tensile loading. The microstructural origin

of the large Poisson’s ratios is unknown. It was hypothesized that a helical organization of fibrils within

a fiber would result in a large Poisson’s ratio in ligaments and tendons, and that this helical organization

would be compatible with the crimped nature of these tissues, thus modeling their classic nonlinear

stress–strain behavior. Micromechanical finite element models were constructed to represent crimped

fibers with a super-helical organization, composed of fibrils embedded within a matrix material. A

homogenization procedure was performed to determine both the effective Poisson’s ratio and the

Poisson function. The results showed that helical fibril organization within a crimped fiber was capable

of simultaneously predicting large Poisson’s ratios and the nonlinear stress–strain behavior seen

experimentally. Parametric studies revealed that the predicted Poisson’s ratio was strongly dependent

on the helical pitch, crimp angle and the material coefficients. The results indicated that, for

physiologically relevant parameters, the models were capable of predicting the large Poisson’s ratios

seen experimentally. It was concluded that helical organization within a crimped fiber can produce

both the characteristic nonlinear stress–strain behavior and large Poisson’s ratios, while fiber crimp

alone could only account for the nonlinear stress–strain behavior.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Tendons and ligaments are fibrous, load bearing tissues that
are characterized by a hierarchical organization of collagen
microstructures. A basic structural component of ligaments and
tendons is the collagen fibril. Fibrils are closely packed within an
extrafibrillar proteoglycan rich matrix to form a fiber. Individual
fibers are encased in the endotendinous sheath and packed into
fasicular units, which then become the constituents of the whole
tendon or ligament complex (Kastelic et al., 1978; Kannus, 2000)
(Fig. 1).

Although there is a wealth of literature on the elastic and
viscoelastic behavior of ligaments and tendons, most studies have
focused on uniaxial stress–strain behavior and largely ignore
volumetric behavior (e.g. Poisson’s ratio). In the biphasic theory,
the compressibility of the solid phase is governed by the
volumetric material coefficients in the constitutive model

(Mow et al., 1980). For uniaxial tensile loading in linear elasticity,
the Poisson’s ratio is a measure of volume change and describes
the lateral contraction in response to an axial strain. The Poisson’s
ratio is strictly a kinematic measure, and can be defined both for
the kinematically linear and nonlinear cases (generally referred to
as the Poisson function in nonlinear theory), and applies to both
isotropic and anisotropic materials. In the latter case, more than
one Poisson’s ratio must be defined.

The reported Poisson’s ratios for tendon and ligament
subjected to tensile loading along the fiber direction ranged from
0.870.3 in rat tail tendon fascicles (Screen and Cheng, 2007) to
2.071.9 in capsular ligament (Hewitt et al., 2001) and 2.9872.59
in bovine flexor tendon (Lynch et al., 2003). Under tensile loading,
these large Poisson’s ratios are indicative of volume loss, which
may result in fluid exudation (Adeeb et al., 2004; Wellen et al.,
2004).

The magnitude of volume loss and thus the quantity of fluid
exuded during deformation may play an important role in the
mechanics and function of these tissues. It has been suggested
that biphasic theory may explain some if not all of the visco-
elastic behavior of ligament and tendon (Atkinson et al., 1997;
Yin and Elliott, 2004). Furthermore, fluid transport resulting
from mechanical forces may aid in nutrient delivery within
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these tissues. Finally, shear forces and or cell membrane
deformation resulting from pressure driven fluid flux may be an
important mechanotransduction signal for tenocytes and fibro-
blasts (Butler et al., 1997; Chen et al., 1998; Lavagnino et al.,
2008). In light of this information, the volumetric behavior, and
thus Poisson’s ratio, is of fundamental importance in under-
standing healthy and diseased ligament and tendon tissue.

A number of studies have examined structure–function
relationships between the fibrillar microstructure and macro-
scopic behavior of the ‘‘toe region’’ of ligaments and tendons
under tensile loading (Diamant et al., 1972; Lanir, 1978; Ault and
Hoffman, 1992; Hurschler, 1997; Freed and Doehring, 2005; Grytz
and Meschke, 2009). However, there are no models in the
literature that predict or explain the large Poisson’s ratio of these
tissues. A review of the literature on fiber based composites
reveals that at least two microstructural fiber geometries are
capable of generating large Poisson’s ratios. One possibility is
multiple fiber families crossing at non-orthogonal angles (Peel,
2007), but histological studies suggest that fibrils and fibers in
most ligaments and tendons are predominantly aligned in a
parallel fashion (Provenzano and Vanderby, 2006). The other
possibility is the helical arrangement of a fiber family (Marklund,
2007).

Several studies have reported the presence of helical structures
within fibers and fascicles of ligament and tendon. Yahia and
Drouin (1989) presented histological evidence that suggests the
presence of a super-helical organization of fibrils in canine
patellofemoral tendon and ACL. An organizational scheme was
suggested in which a helical twist was superimposed on top of
crimp structures. The scale of this twist was suggested as being an
order of magnitude larger than that of the crimp. Studies by Vidal
et al. have also presented histological evidence suggesting a
super-helical arrangement of fibrils (Vidal Bde, 1995; Vidal, 2003;
Vidal Bde and Mello, 2009). It was suggested that this helical
arrangement is difficult to see in standard preparations, which
may account for their absence in past histological studies.

It was hypothesized that a micromechanical model with
super-helical fibril organization in the presence of crimp would
predict the large Poisson’s ratios seen experimentally while
simultaneously predicting the nonlinear stress–strain behavior
of these tissues. The objective of this study was to use homo-
genization methods and finite element micromechanical models
to test this hypothesis, as well as to assess the influence of
material coefficients and geometric characteristics of the micro-
mechanical model on the predicted Poisson’s ratio.

2. Methods

2.1. Fiber geometry and unit cell

It was assumed that a fiber is the fundamental repeating structural unit within

a tendon and ligament. For the purposes of homogenization, a single fiber unit was

considered to be a periodic unit cell. Unit cells were modeled by embedding

discrete fibrils within a more compliant matrix material and were assumed to be

hexagonally packed within the fiber (Chen et al., 1998). It was assumed that the

matrix material modeled both the inter-fibrillar and inter-fiber space. The number

of fibrils embedded within the fiber was varied as part of the study, with models

featuring 7–91 discrete fibrils (Fig. 2). The fibril diameter was set to 100 nm, based

on values reported in the literature for ligament and tendon (Baek et al., 1998). The

inter-fibrillar spacing was set to 25 nm (Baek et al., 1998), which generated a fibril

volume fraction of 57%. The baseline model contained 37 fibrils (based on a

convergence study described later in the text), had a diameter of 0.769 mm and a

height of 8.0 mm. Transformations were applied to the baseline model in order to

generate models with planar crimp, helical twisting and planar crimp models with

a super-helical twist (Fig. 3).

2.2. Sinusoidal and helical transformation of unit cells

The most accepted geometric model of fiber crimp is planar crimp, in which

the crimp plane is constant throughout the fiber and fascicle (Rowe, 1985;

Gathercole and Keller, 1991; Hansen et al., 2002). Planar crimp models were

generated by applying a sinusoidal transformation of the following form along the

fiber axis:

y0 ¼ yþAysin 2p z

l

� �
; Ay ¼

l
4

tanðycrimpÞ; ð1Þ

where l is the crimp period and ycrimp is the crimp angle (Fig. 4A). To accurately

represent the crimp structures observed in histological studies (Hansen et al.,

2002; Hurschler et al., 2003; Jarvinen et al., 2004), the models were scaled such

that the ratio of the crimp period to fiber diameter was similar to that seen

experimentally

lexperiment

Dexperiment
¼

lmodel

Dmodel
; ð2Þ

where lexperiment and Dexperiment are the experimentally measured crimp period and

fiber diameter and lmodel and Dmodel are the model crimp period and model fiber

diameter, respectively. Histologically measured values for the crimp period and

fiber diameter vary between tendons and ligaments, as well as between studies.

Table 1 provides values from the literature for rat tail tendon, rat MCL, human

Achilles tendon and for the baseline model used in this study (Gathercole and

Keller, 1991; Hansen et al., 2002; Hurschler et al., 2003; Jarvinen et al., 2004;

Franchi et al., 2007).

Helical models were generated with a mean fibril pitch (averaged over all

fibrils) ranging from 01 to 601 (Fig. 4B). To generate the helical models, the mesh

nodes were rotated by an angle y about the fiber axis such that a complete rotation

was generated. Since the diameter of a given fiber model was constant, the helical

pitch was altered by changing the height of the model such that

ypitch ¼
2pr

H
ð3Þ

These models were then modified to include planar crimp superimposed with

helical twist. The scaling of the models required that the length was a multiple of

the crimp period, which restricted the possible model lengths and thus the helical

pitch.

Fig. 2. Separate models were constructed with 7, 19, 37, 61 and 91 discrete fibrils.

Model C, which had 37 fibrils, was considered to be the base model and was used

for most simulations.

Fig. 1. Schematic of tendon and ligament microstructure, adapted from Kastelic

et al. (1978).
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