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a b s t r a c t

A biphasic nonlinear mathematical model is proposed for the concomitant fluid transport and tissue

deformation that occurs during constant flow rate infusions into brain tissue. The model takes into

account material and geometrical nonlinearities, a hydraulic conductivity dependent on strain, and

nonlinear boundary conditions at the infusion cavity. The biphasic equations were implemented in a

custom written code assuming spherical symmetry and using an updated Lagrangian finite element

algorithm. Results of the model showed that both geometric and material nonlinearities play an

important role in the physics of infusions, yielding important differences from infinitesimal analyses.

Geometrical nonlinearities were mainly due to the significant enlargement of the infusion cavity, while

variations of the parameters that describe the degree of nonlinearity of the stress–strain curve yielded

significant differences in all distributions. For example, a parameter set showing stiffening under

tension yielded maximum values of radial displacement and porosity not localized at the infusion

cavity. On the other hand, a parameter set showing softening under tension yielded a slight decrease in

the fluid velocity for a three-fold increase in the flow rate, which can be explained by the substantial

increase of the infusion cavity, not considered in linear analyses. This study strongly suggests that

significant enlargement of the infusion cavity is a real phenomenon during infusions that may produce

collateral damage to brain tissue. Our results indicate that more experimental tests have to be

undertaken in order to determine material nonlinearities of brain tissue over a range of strains. With

better understanding of these nonlinear effects, clinicians may be able to develop protocols that can

minimize the damage to surrounding tissue.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The delivery of therapeutic agents into the brain is impeded by
the blood–brain barrier, preventing adequate treatment of tumors
and other diseases of the central nervous system. Convection-
enhanced delivery was developed as a means to deliver ther-
apeutic agents directly into brain tissue and to transport the drugs
in the extracellular space using convective flow.

To study the efficacy of convection-enhanced delivery as a
treatment protocol, it is necessary to determine the convective
flow that results from the infusion. Because measuring interstitial
fluid pressure and fluid velocities in vivo is very difficult,
researchers have developed mathematical models of convection-
enhanced delivery. Poroelastic or biphasic models of brain tissue
have been used to study the concomitant fluid transport and
tissue deformation that occurs during infusion (Barry and Aldis,

1992; Basser, 1992; Smith and Humphrey, 2007), however each of
these studies is limited by the assumption of linear elasticity of
the solid phase. Simultaneous tissue deformation and mass
transport during infusion has only been recently studied by Netti
et al. (2003) and Chen and Sarntinoranont (2007), both of whom
assume linear elasticity of the solid phase.

While rigidity or linear elasticity is a common assumption of
the aforementioned studies, nonlinear stress–strain curves under
finite deformations have been documented for brain tissue (Miller
and Chinzei, 1997, 2002; Franceschini et al., 2006). In addition, the
nonlinear variation of hydraulic conductivity with strain has also
been taken into account in recent studies of hydrocephalus, and
this effect has been deemed to play an important role in both the
mechanics of the tissue and the associated fluid transport (Sobey
and Wirth, 2006; Wirth and Sobey, 2006).

Recently, we proposed a spherical, biphasic model for constant
pressure infusion into brain tissue that considers simultaneously
nonlinear stress–strain curves under finite deformation and
nonlinear variation of hydraulic conductivity (Garcı́a and Smith,
2009). In practice, however, most experimental or clinical
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infusions are conducted under constant flow rate conditions, in
which case the pressure to which the brain is exposed is not
controlled and varies to sustain the applied flow rate.

We present a spherical model of flow-controlled infusions,
implemented in a custom code written by the authors, to study
the physics that occur and to determine the importance of using a
nonlinear material model for brain tissue and of including a
deformation-dependent hydraulic conductivity. This geometry
simplification allowed for an efficient implementation of the
nonlinear iterative scheme by using two-node elements that
represent spherical domains. To the best of our knowledge, no
commercial finite element solver allows for the inclusion of all
these nonlinearities in biphasic analyses that could ultimately be
coupled with mass transport analyses of the infused agent.
Knowing the significance of each effect is important for the
development of more advanced, three-dimensional computa-
tional models that may ultimately aid in devising infusion
protocols for the treatment of diseases of brain tissue.

2. Methods

2.1. Governing equations

The biphasic model of constant pressure infusions (Garcı́a and Smith, 2009) is

adapted to constant flow rate infusions. Briefly, considering spherical symmetry

and finite deformations, fluid flow and strain are described by the following

equations:

1

r2

@

@r
½r2ðsr � pÞ� �

2

r
ðsy � pÞ ¼ 0 ð1Þ

1

r2

@

@r
½r2vs� �

1

r2

@

@r
k r2 @p

@r

� �
¼ 0; ð2Þ

where sr and sy are the effective stresses in radial and tangential direction,

respectively, vs the velocity of the solid phase, p the pore pressure, and k the

hydraulic conductivity. All variables only change with the radial coordinate r,

which represents the current position of a material element.

The behavior of the solid phase was represented by the isotropic hyperelastic

energy function
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where lr and ly are the radial and circumferential stretch ratios, respectively, mk,

ak, and m0 material parameters, and J the determinant of the deformation gradient

tensor (Ogden, 1984). The parameters ak can be adjusted to describe the shape of

the stress–strain curve (Miller and Chinzei, 2002; Franceschini et al., 2006) and the

parameter m0 depends on the Poisson’s ratio. The Young’s modulus E and Poisson’s

ratio n at zero strain are related to the strain energy parameters by the relations
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To be consistent with other analyses of brain tissue (Chen and Sarntinoranont,

2007; Garcı́a and Smith, 2009; Sobey and Wirth, 2006; Wirth and Sobey, 2006),

the variation of hydraulic conductivity with strain was assumed to depend on

tissue dilatation as

k ¼ k0expðMeÞ; ð6Þ

where k0 is the hydraulic conductivity at zero strain, M a nondimensional

parameter that controls the variation of hydraulic conductivity, and e the

dilatation. This spatial and time varying hydraulic conductivity was used in

Darcy’s law to calculate the bulk fluid velocity vf as

vf ¼ �k
@p

@r
þff vs; ð7Þ

where the fraction of the fluid phase ff (or porosity) was calculated using

ff ¼ 1� ð1�ff0
Þ=J; ð8Þ

where ff0
is the initial fluid fraction.

2.2. Finite element implementation and verification

The solution of these governing equations was implemented in a custom finite

element code written by the authors. The spatial discretization of Eqs. (1) and (2)

was accomplished using an updated Lagrangian scheme where linear polynomials

were used as the shape and weighting functions. The time derivative of the radial

displacement was approximated with the backward difference, and a Newton

procedure was implemented to solve the nonlinear set of algebraic equations at

each time step (Almeida and Spilker, 1997; Belytschko et al., 2000).

Fig. 1. Schematic of the spherical geometry and finite element mesh used in this

study. The innermost sphere represents the infusion cavity, whereas the outermost

sphere represents the outer boundary of the computational domain. The

horizontal dashed line represents the mesh, which is biased toward the infusion

cavity, illustrated by the shorter dashes, in contrast with the longer dashes toward

the outer sphere. The thicken portion of the horizontal line corresponds to a single

element, and the volume between the concentric spheres at both ends illustrates

the spherical domain the element represents.
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Fig. 2. Uniaxial stress response for the two sets of nonlinear parameters:

a1 ¼ �4.7, a2 ¼ 0 from Miller and Chinzei (2002) and a1 ¼ 4.31, a2 ¼ 7.74 from

Franceschini et al. (2006). The Young’s modulus of 421 Pa is equal to the slope of

each curve at zero deformation, i.e., stretch ratio equal to one.

J.H. Smith, J.J. Garćıa / Journal of Biomechanics 42 (2009) 2017–20252018



Download English Version:

https://daneshyari.com/en/article/873852

Download Persian Version:

https://daneshyari.com/article/873852

Daneshyari.com

https://daneshyari.com/en/article/873852
https://daneshyari.com/article/873852
https://daneshyari.com

