

Original Article

A "Ct contrast"-based strain-specific real-time quantitative PCR system for *Lactobacilllus paracasei* subsp. *paracasei* NTU 101

Chih-Hui Lin^a, Tsung-Wei Shih^b, Tzu-Ming Pan^{c,*}

^a Department of Life Science, National Taitung University, Taiwan

^b SunWay Biotech Ltd., Taiwan

^c Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taiwan

Received 21 October 2015; received in revised form 18 June 2016; accepted 24 May 2017 Available online

KEYWORDS RAPD; Strain-specific; qPCR; <i>Lactobacillus</i> ; Probiotics	Abstract Background/Purposes: Routine cell number determination for specific Lactobacillus strain by cultivation requires at least 4–7 days. Thus rapid and specific cell number determine methods such as strain-specific quantitative PCR (qPCR) are valuable. However, qPCR method is vulnerable to difficult PCR target such as dimer/secondary structure forming sequence. <i>Methods:</i> In this study, a two-component, "Ct contrast" approach was applied to strain-specific qPCR system following the development of <i>Lactobacillus paracasei</i> subsp. <i>paracasei</i> NTU 101 (NTU 101) strain-specific PCR with random amplification of polymorphic DNA (RAPD)-derived strain-specific sequences. <i>Results:</i> The quantitative range of the NTU 101 strain-specific qPCR system was 3.0×10^1 to 3.0×10^5 copies for pure cultures, and 3.0×10^2 to 3.0×10^5 copies for multi-strain or unknown food samples. The results of spike in test and real sample testing suggested that non-specific weak background signals did not compromise test specificity, and demonstrated the potential of the NTU 101 strain-specific qPCR system in food samples. <i>Conclusion:</i> The two-component, "Ct contrast" approach is useful for qPCR discrimination when no ideal PCR target is available or the variance of the target site is unpredictable. The Ct contrast approach might provide a simple and robust solution for other challenging qPCR targets. Copyright © 2017, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. Fax: +886 2 3366 3838.

E-mail address: tmpan@ntu.edu.tw (T.-M. Pan).

http://dx.doi.org/10.1016/j.jmii.2017.05.002

1684-1182/Copyright © 2017, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: Lin C-H, et al., A "Ct contrast"-based strain-specific real-time quantitative PCR system for *Lacto-bacillus paracasei* subsp. *paracasei* NTU 101, Journal of Microbiology, Immunology and Infection (2017), http://dx.doi.org/10.1016/j.jmii.2017.05.002

Introduction

Lactobacillus strains are well-known lactic acid bacteria (LAB) that are used in foods and as probiotics, and there are many reports of their beneficial effects on human and animal health.¹⁻³ DNA/PCR-based methods such as random amplification of polymorphic DNA (RAPD), pulse-field gel electrophoresis (PFGE), and ribotyping have been widely used for bacterial strain discrimination. However, PCR methods that target the 16S rRNA gene or the intergenic spacer region between the 16S and 23S genes are not applicable at strain level because of the highly conserved Lactobacillus rRNA gene sequences. RAPD markers that derived from highly polymorphic genomic sequences usually also represent a potential strain-specific sequence region. Thus, the concept of RAPD-derived strain-specific sequence was developed and successfully applied to strain-specific detection of LAB and lactobacilli.4-

Real-time quantitative PCR (qPCR) is the current method of choice for detecting and quantifying cell numbers. Several allele-specific methods such as allele-specific blocker PCR (ASB-PCR) have been successfully developed to detect minor sequence variations such as single nucleotide polymorphisms (SNPs).⁷ Introduction of allele-specific qPCR strategy might help to establish strain-specific qPCR method that only minor sequence variation available.

Lactobacilllus paracasei subsp. paracasei NTU 101 (NTU 101; DSMZ 28047) was originally isolated from an infant,⁸ and is a LAB used in yogurt and probiotic products. It benefits human health in several ways, including hypocholesterolemic,⁹ anti-atherosclerotic,¹⁰ anti-hypertensive,¹¹ antiosteoporosis,¹² and immunomodulating effects,^{13,14} as well as preventing infection,¹⁵ gastric mucosal lesions,¹⁶ and fat accumulation.¹⁷

In this study, we established RAPD-derived NTU 101specific PCR to detect NTU 101. Unfortunately, the NTU 101-specific sequence was difficult for routine qPCR assay due to its dimer/secondary structure forming trend. Thus a novel strategy which based on the "Ct contrast" of two qPCR assays to discriminate the background qPCR signal from close relatives of NTU 101 was developed for strainspecific qPCR detection of NTU 101.

Methods

Lactobacillus strains and cultivation

Thirty-four strains/species of *Lactobacillus casei* group lactobacilli (Table 1) and 70 strains/species of non-*L. casei* group lactobacilli (Table 2) were purchased from Bio-resource Collection and Research Center (BCRC; Hsinchu, Taiwan). NTU 101 was provided by Professor Tzu-Ming Pan (Department of Biochemical Science and Technology, National Taiwan University).

DNA extraction, quantification, and sequence analysis

Lactobacilli DNA were extracted using a QIAamp[®] DNA mini kit (Qiagen GmbH, Hilden, Germany) according to

manufacturer's instructions. Geneious R6-1 software (Biomatters Ltd., Auckland, New Zealand) was used for all DNA sequence analyses includes primer design, sequence assembly, and alignment.

Strain-specific PCR

The NTU 101-specific primers A3-5F3 (5'-CGCCGAACGC-GACTTACATC-3') and A3-5R3 (5'-GGCAAATTTAAACTTGCCT-TCAACG-3') were designed corresponding to the unique

Microorganism	Strain ID/BCRC	
	serial number	
Lactobacillus paracasei subsp.	NTU 101	
paracasei		
Lactobacillus casei	BCRC 10358	
Lactobacillus casei	BCRC 10697T	
Lactobacillus casei	BCRC 11197	
Lactobacillus casei	BCRC 12272	
Lactobacillus casei	BCRC 14025	
Lactobacillus casei	BCRC 16093	
Lactobacillus casei	BCRC 16094	
Lactobacillus casei	BCRC 17001	
Lactobacillus casei	BCRC 17004	
Lactobacillus casei	BCRC 17487	
Lactobacillus paracasei subsp.	BCRC 12188	
paracasei		
Lactobacillus paracasei subsp.	BCRC 12248T	
paracasei		
Lactobacillus paracasei subsp.	BCRC 14001	
paracasei		
Lactobacillus paracasei subsp.	BCRC 14023	
paracasei		
Lactobacillus paracasei subsp.	BCRC 16100	
paracasei		
Lactobacillus paracasei subsp.	BCRC 17002	
paracasei		
Lactobacillus paracasei subsp.	BCRC 17483	
paracasei		
Lactobacillus paracasei subsp.	BCRC 17484	
paracasei		
Lactobacillus paracasei subsp.	BCRC 17485	
tolerans	20110 17 100	
Lactobacillus paracasei subsp.	BCRC 17488	
paracasei		
Lactobacillus paracasei subsp.	BCRC 17489	
paracasei		
Lactobacillus paracasei	BCRC 80062	
Lactobacillus zeae	BCRC 17647T	
Lactobacillus zeae	BCRC 170471 BCRC 17942T	
Lactobacillus zeae	BCRC 80156	
Lactobacillus rhamnosus	BCRC 10940T	
Lactobacillus rhamnosus	BCRC 109401 BCRC 11673	
Lactobacillus rhamnosus	BCRC 12249	
Lactobacillus rhamnosus	BCRC 12249 BCRC 14027	
Lactobacillus rhamnosus	BCRC 14027 BCRC 16095	
Lactobacillus rhamnosus	BCRC 17006	
Lactobacillus rhamnosus	BCRC 17008 BCRC 17007	
Lactobacillus rhannosus	BCRC 80065	

Please cite this article in press as: Lin C-H, et al., A "Ct contrast"-based strain-specific real-time quantitative PCR system for *Lacto-bacillus paracasei* subsp. *paracasei* NTU 101, Journal of Microbiology, Immunology and Infection (2017), http://dx.doi.org/10.1016/j.jmii.2017.05.002

Download English Version:

https://daneshyari.com/en/article/8740828

Download Persian Version:

https://daneshyari.com/article/8740828

Daneshyari.com