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A B S T R A C T

Background: In an influenza pandemic, arrival times of cases are a proxy of the epidemic size and disease
transmissibility. Because of intense surveillance of travelers from infected countries, detection is more rapid and
complete than on local surveillance. Travel information can provide a more reliable estimation of transmission
parameters.
Method: We developed an Approximate Bayesian Computation algorithm to estimate the basic reproduction
number (R0) in addition to the reporting rate and unobserved epidemic start time, utilizing travel, and routine
surveillance data in an influenza pandemic. A simulation was conducted to assess the sampling uncertainty. The
estimation approach was further applied to the 2009 influenza A/H1N1 pandemic in Mexico as a case study.
Results: In the simulations, we showed that the estimation approach was valid and reliable in different simu-
lation settings. We also found estimates of R0 and the reporting rate to be 1.37 (95% Credible Interval [CI]:
1.26–1.42) and 4.9% (95% CI: 0.1%–18%), respectively, in the 2009 influenza pandemic in Mexico, which were
robust to variations in the fixed parameters. The estimated R0 was consistent with that in the literature.
Conclusions: This method is useful for officials to obtain reliable estimates of disease transmissibility for strategic
planning. We suggest that improvements to the flow of reporting for confirmed cases among patients arriving at
different countries are required.

1. Introduction

Basic reproduction number (R0) is an epidemiological metric to
measure the number of secondary infections generated on average by
an infected patient in a whole susceptible population. It is useful in
summarizing the transmissibility of an infectious disease in a popula-
tion. If R0 > 1, an infection will persist in a population and become
endemic because each infected person is expected to have more than
one transmission. In contrast, if R0 < 1, the disease transmission
cannot be sustained. An underestimation of R0 could lead to un-
preparedness among officials on disease mitigation.

The estimated R0 can be fitted through feeding syndromic, ser-
ological data and laboratory-confirmed counts into simple statistical
models (e.g., exponential growth curve) or traditional Susceptible-
Infectious-Recovered (SIR) models [1–4]. Nevertheless, common esti-
mation approaches using such data required an assumption of no un-
derreporting, although several approaches were developed to adjust for
this problem [5]. Recently, syndromic data were commonly used for
influenza prediction and R0 estimation. For example, Ginsberg et al.

demonstrated that Google search queries could track weekly influenza
activity [6]. Conversely, serological data could be used to infer influ-
enza transmissibility, although in this case, the time for diagnostic
confirmation is longer [7,8]. Compared with other kinds of data, ser-
ological data could be used to infer asymptomatic infections without
being affected by under-reporting.

To overcome the underreporting problem in R0 estimation using
surveillance data, travel data from the exported cases can provide ad-
ditional information. The arrival times of infected cases from the ori-
ginating country are a metric of the expansion of the epidemic and the
interaction thereof with international transportation networks [9–11].
In addition to using routine surveillance data, the arrival times of ex-
ported cases could help reduce the errors incurred by undetected local
cases. Compared with serological data, this information is usually more
readily accessible.

In this study, we developed an approach to estimate R0 and the
reporting rate for a new influenza pandemic using an Approximate
Bayesian Computation (ABC). The ABC algorithm adopted the use of
routine surveillance data as well as information on exported cases, i.e.,
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the arrival time of the first introduction of an infection to different
countries, originating from the source country. We applied this method
to the influenza A/H1N1 pandemic in Mexico in mid-March 2009.

2. Materials and methods

2.1. Generation of an epidemic

To fit the influenza epidemic, we used a simple SIR model to de-
scribe the transmission dynamics of the infectious disease [1]. In this
model, a population is partitioned into three different sub-populations
(‘compartments’): susceptible (S(t)), infectious (I(t)), and recovered (R
(t)) in each of the time points, t (t=0, 1, 2, 3 …). Individuals in the
susceptible compartment (S(t)) can be infected with a disease at a
specific transmission rate (β) and ht=(β/N)SI is the number of new
infections per unit time. Infected individuals will become part of the
infectious compartment (I(t)) and recover at rate γ. The infectious
duration is equal to 1/γ, given an exponential assumption. By assuming
the pandemic is started with a wholly susceptible population, R0 is
equal to β/γ [2]. Based on some numeric calculations (Appendix A), we
can approximate the prevalence of infections I(t) in the population as

= − = −I t I β γ t R γt( ) (0)exp[( ) ] exp[( 1) ]0 (1)

2.2. Generation of cases seeded by originating country

Assuming that the visitors have the same exposure risk to the dis-
ease as the local residents, we can determine the number of infected
visitors generated to country i as

×
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where mi(t) is the number of visitors from country i to the country with
the pandemic outbreak (originating country) at day t (i=1, …, n). d is
the mean duration of visitor stay in the outbreak country, so the pro-
duct of mi(t) and d is the total number of visitors staying the originating
country. By adapting the approximation of the prevalence of infections
(I(t)), the expectation day of the first detection of an imported infection
is

∑= −
=

E T p pt( ) (1 )i t i t
t

0,1,2,... , (3)

where pi t, is the time-varying probability of detecting at least one in-
fected visitor in country i (Appendix B). Given the values of the dif-
ferent parameters, the expected arrival day of the imported cases
seeded by originating country can be generated and fitted against the
observed values. Fig. 1 shows a simple expression of the generation of
exported cases from the infected country.

2.3. Estimation algorithm

Consistent with the literature, solely fitting surveillance data to an
SIR model for R0 estimation may subject to the problem of under-
reporting. In this study, we employed an ABC algorithm to estimate
multiple parameters [12]. The ABC algorithm allows for a Bayesian
inference on drawing posterior distributions for the parameters (Θ):

∝f Θ data f data Θ π Θ( ) ( ) ( ) (4)

where f data Θ( ) is the data model and π(Θ) is the prior distribution of
the parameters. By using typical Monte Carlo simulation methods, the
posterior distribution can be iteratively generated from the random
draws of the data model and the prior distributions. However, these
methods would produce high autocorrelations in the chains of esti-
mates, especially in SIR-type models, and ABC can be used to avoid
these problems [34]. In the ABC algorithm, we assumed that the

epidemic started at an unobserved time, with interval tunobs, because of
underreporting (a constant reporting rate [r] is assumed), so the ob-
served incidence by time ( ′h t) is +rht tunobs, which is adjusted from the SIR
model. Although the actual epidemic cannot be unobserved, a growing
outbreak would undoubtedly affect the visitors, and thus export the
cases to other countries (Fig. 1). On the basis of this assumption, we
utilized the surveillance data (i.e. number of reported local cases by
time) and travel data (i.e. daily travelling rate from country i to the
country with disease outbreak and the arrival date of the first imported
case bringing the disease to country i) in the estimation algorithm.

In the ABC algorithm, we set the parameter space Θ as t R r, ,unobs
0

and started by randomly drawing the parameter values from the prior
distributions (i.e. i.e. R0∼Uniform(1, 3), r∼Uniform(0.01%, 50%), and
tunobs∼Uniform(0, 12 weeks before the observed epidemic start time)).
Given the daily travelling rates (mi(t)) and fixing N, φ, d, and γ, the data
of the disease incidence and expected arrival day of the imported cases
can be generated through adapting the prior parameter values in SIR
model, and equation (3) respectively. The generated data are then
compared with the observed data using a distance metric, i.e., d(ob-
served data, generated data). A common L1-norm is employed for the
distance metric, i.e., least absolute deviations. The simulated data will
only be accepted as draws from the posterior distribution if the distance
is less than the tolerance level (ε) in which ε > 0. Because of two
different generated data sets, two tolerance levels (ε1 and ε2) were re-
spectively applied. The computation algorithm is noted in Appendix C.

2.4. Sampling uncertainty

To assess the validity and reliability of the estimation algorithm, we
conducted a simulation exercise for the following three scenario set-
tings:

• Scenario 1: R0=1.2, r=1%, and tunobs=6 weeks before the ob-
served epidemic start time

• Scenario 2: R0=1.7, r=10%, and tunobs=2 weeks before the ob-
served epidemic start time

• Scenario 3: R0=2.2, r=20%, and tunobs=3 days before the ob-
served epidemic start time

We fixed the infectious duration as 3 days, the average duration of
stay in the originating country as 3 days, and φ as 30% in the simula-
tion. The population was fixed at 1,000,000 individuals. In each of the
iteration of simulations, the daily rates of travel to n countries (i=1,
…, n) were randomly drawn from a uniform distribution (200, 2000)
and were constant over time, i.e., mi(t)=mi. On the basis of these
values, the arrival days of imported cases were randomly drawn from a
geometric distribution using the probability by time in equation (3).
The medians and 2.5% and 97.5% percentiles (i.e. 95% credible in-
terval [CI]) of the ABC estimates were obtained over 1000 realizations
in each of the scenarios.

2.5. Numeric application

The estimation algorithm was applied to the influenza A/H1N1
pandemic in 2009. The influenza A/H1N1 pandemic originated in
Mexico on March 14, 2009. During the start of the pandemic, officials
and public lacked the knowledge about this communicable disease and
as time passed, an unexpected in increase in influenza infections were
successively reported. Within a short period of time, the virus had
spread to many other countries worldwide. In June 2009, the World
Health Organization (WHO) raised the alert level from epidemic to
pandemic. From April 2009 to May 2010, more than 18,000 laboratory-
confirmed deaths from H1N1 infection were reported. Although the
influenza A/H1N1 pandemic ended, the disease tends to occur sea-
sonally.

In the numeric application, we fixed the population of Mexico (N) as
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