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As microbes face changing environments, they dynamically

allocate macromolecular resources to produce a particular

phenotypic state. Broad ‘omics’ data sets have revealed

several interesting phenomena regarding how the proteome is

allocated under differing conditions, but the functional

consequences of these states and how they are achieved

remain open questions. Various types of multi-scale

mathematical models have been used to elucidate the genetic

basis for systems-level adaptations. In this review, we outline

several different strategies by which microbes accomplish

resource allocation and detail how mathematical models have

aided in our understanding of these processes. Ultimately,

such modeling efforts have helped elucidate the principles of

proteome allocation and hold promise for further discovery.
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Introduction
Microbes face transiently changing environments that

require the expression of new proteins and the dilution

or degradation of others. To adapt to these environmental

changes, cells preferentially allocate these macromolecu-

lar resources to achieve certain objectives, a process

typically referred to as ‘resource allocation.’ The total

amount and allocation of these proteins is fundamentally

limited by constraints such as enzyme kinetics, cell size,

and nutrient availability [1–4]. Therefore, microbes are

regularly under selection pressure to optimize their

resource allocation.

The macromolecular state of a cell can be measured using

‘omics’ technologies, allowing insights into how resource

allocation changes in a given condition. Omics data have

revealed a highly skewed distribution of macromolecular

resource allocation. For example, the most abundant

190 proteins in E. coli are estimated to account for about

60% of the total protein mass [5]. The functional con-

sequences of such skewed macromolecular composi-

tions — and how microbes regulate their state — are

open questions. Over the past few years, studies that

integrate omics and mathematical modeling have

increased our knowledge of how microbes allocate mac-

romolecular resources and of the genetic basis of these

allocation strategies.

In this review, we summarize the current understanding

of microbial resource allocation based on recent omics

measurements from the perspective of biochemical net-

works. We discuss how computational models have been

used to elucidate the functional significance of a cellular

state and how these functions are linked to a genetic basis.

We close with perspectives on promising directions for

future modeling studies and the potential for examining

resource allocation in the context of human health.

Proteome pre-allocation provides fitness
benefits at a cost
The most direct way for microbes to alter the proteome is

to synthesize proteins as needed. The maximum transla-

tion rate in E. coli is 16-20 amino acids per second per

ribosome [6,7,8], implying synthesis in �15 seconds for a

copy of protein. However, protein abundances range from

�1 to >100 000 copies per cell [9��], and ribosome

abundances from �7000 to >70 000 per cell [7]. There-

fore, during a nutrient shift where hundreds of thousands

of additional protein copies can be needed [9��], cells

must utilize efficient strategies to dynamically allocate

expression machinery resources. One strategy to mini-

mize the delay of protein synthesis is to constitutively

express proteins even when they are not immediately

beneficial. This pre-allocation strategy incurs the cost of

using up expression machinery that could be used to

express immediately useful proteins, and a metabolic

(energetic) cost of expression. Combined omics and
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modeling analyses have been used to test the hypothesis

of pre-allocation.

In E. coli, up to half of expressed protein mass potentially

provides no immediate benefit for a given growth condi-

tion [10]. Even when grown on glucose minimal medium,

at least 13% of the proteins expressed confer no imme-

diate fitness benefit based on ribosomal profiling and

transposon mutagenesis [11]. Genome-scale model com-

putations suggested that pre-allocating the E. coli prote-

ome toward alternative carbon sources may provide a

fitness benefit when alternative carbon sources are

encountered [10].

Pre-allocation also applies to expressing more expression

machinery than immediately needed to ensure fast

expression rates when needed in a new environment.

For example, when growing E. coli under feast-famine

cycles, growth recovery during the feast phase was maxi-

mized by strategically allocating a ribosomal protein

reserve [12�].

These results suggest that omics data contain information

both on the immediate response to the current environ-

ment and the regulatory program shaped by the orga-

nism’s evolutionary history. Computational models help

to distinguish environment-specific response from pre-

programmed responses shaped by evolutionary history.

Hierarchical regulation of resource allocation
robustly improves fitness
Cellular metabolism has long been recognized to be

regulated through a hierarchical network of regulatory

processes [13]. The slow processes of transcriptional

regulation and post-translational modifications act

together with fast metabolite-level allosteric regulation

to control metabolic fluxes [14,15]. Metabolites also mod-

ify transcription factors (TFs), leading to a coupling

between metabolism and transcriptional regulation.

Recently, there has been increasing recognition of the

importance of growth rate-associated global transcrip-

tional regulation for resource allocation. For example, a

recent study [16] showed that over 90% of transcriptional

changes in 100 E. coli genes across 26 environments could

be explained by a surprisingly small number of metabo-

lite-TF interactions along with global regulation. In

response to nutrient shifts, E. coli was found to use a

global proteome reallocation strategy [17] instead of a

theoretically optimal strategy of sequentially de-bottle-

necking the rate limiting enzymes [18]. This apparently

conservative strategy was hypothesized to be robust by

confining metabolic bottlenecks to central precursors that

drive global regulatory control [17].

However, growth rate-dependent regulation is not always

dominant and appears to be context specific. A recent

study subjected E. coli to a transient nutrient stress by

starvation or by switching to a lower quality carbon source

[19]. The study revealed a central role for proteome

allocation in triggering the ‘persister’ phenotype, a meta-

bolically active but non-growing state with increased

antibiotic tolerance [20]. Analysis of time-course proteo-

mics from the nutrient-stressed cells (including persis-

ters) and proteomics from other stress conditions (pH,

temperature, and osmotic) revealed that proteome allo-

cation was mainly driven by ppGpp-mediated regulation

rather than a global growth rate effect [19]. Interestingly,

a recent modeling study [21] showed that the optimal

control strategy for E. coli to dynamically allocate

resources during environmental changes involves an iter-

ative on-off control strategy that resembles the structure

of ppGpp-mediated regulation of ribosomal RNA tran-

scription [22]. It thus appears that resource allocation

under a variety of stresses may be mediated through

overlapping mechanisms that are distinct from those of

unstressed conditions.

Laboratory evolution aids in understanding
the genetic basis of cellular resource
allocation
Adaptive laboratory evolution (ALE) is an experimental

method of serially passaging cells under a selection pres-

sure. The outcome of ALE is a set of strains possessing

adaptive mutations. ALE has now been automated [23],

enabling large-scale production of evolved strains, fol-

lowed by phenotyping and system-level characterization

by DNA re-sequencing, RNA-Seq, 13C-metabolic flux

analysis, etc. ALE has been used to reveal the genetic

basis of growth rate-selection under various conditions:

different carbon sources [24], thermal stress [25], osmotic

and chemical stress [26,27], oxidative stress [27], and gene

knockouts [28].

Multiple studies have connected the systems-level adap-

tations in an evolved strain to a genetic basis. For exam-

ple, strains of E. coli were evolved for fast aerobic growth

on glucose minimal media, yielding frequent key muta-

tions in genes including rpoB and hns. Despite the poten-

tially broad effects of mutations in these global regulators,

the strains showed little change in intracellular metabolic

pathway usage. Rather, the mutations enabled higher

fluxes for glucose uptake, oxygen uptake, and central

carbon metabolism [29]. Interestingly, TCA cycle

enzymes have been reported to be transcriptionally

repressed under similar selection pressure, yet TCA cycle

metabolic flux did not decrease [29]. This result suggests

potential nonlinearities between transcriptome abun-

dance, proteome allocation, and flux capacity. A

genome-scale model-based analysis further suggests that

this nonlinearity arises in part from the flexibility of

metabolic states that support optimal growth under these

conditions [29]. Specifically, simulations showed that

growth at 99% of the computed maximum rate could
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