Contents lists available at ScienceDirect

Journal of Global Antimicrobial Resistance

journal homepage: www.elsevier.com/locate/jgar

Short Communication

Is meropenem MIC increase against KPC-producing *Klebsiella pneumoniae* correlated with increased resistance rates against other antimicrobials with Gram-negative activity?

Piergiorgio Cojutti^{a,b}, Assunta Sartor^c, Matteo Bassetti^{b,d}, Claudio Scarparo^c, Federico Pea^{a,b,*}

^a Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Integrata, Udine, Italy ^b Department of Medicine, University of Udine, Udine, Italy

^C Microbiology Laboratory Unit, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Integrata, Udine, Italy ^a Infectious Diseases Clinic, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Integrata, Udine, Italy

injectious Diseases clinic, sunta mana della misericordia Oniversity Hospital, Azienda suntaria Oniversitaria integrata, odine, naty

ARTICLE INFO

Article history: Received 25 January 2018 Received in revised form 3 May 2018 Accepted 7 May 2018 Available online 9 July 2018

Keywords: KPC-producing Klebsiella pneumoniae Meropenem Tigecycline Colistin Aminoglycosides Fluoroquinolones

ABSTRACT

Objectives: The aim of this study was to assess the minimum inhibitory concentration (MIC) distribution for meropenem and other antimicrobials with Gram-negative activity against *Klebsiella pneumoniae* carbapenemase-producing *K. pneumoniae* (KPC-Kp) clinical isolates collected at a tertiary hospital in Italy between 2013–2016.

Methods: The antimicrobial susceptibility of KPC-Kp strains was tested by the broth microdilution method using customised 96-well plates and the results were interpreted according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations.

Results: Among 169 consecutive KPC-Kp clinical isolates, 45 (26.6%) were susceptible to meropenem (MIC $\leq 2 \text{ mg/L}$). Among the 124 meropenem-resistant isolates, 73 (58.9%) had a meropenem MIC between 16–64 mg/L. The overall resistance rate for the other antimicrobials tested was very high both for ciprofloxacin and levofloxacin (99.0%), was moderate for amikacin (37.4%) and was low for gentamicin (11.2%), colistin (8.2%) and tigecycline (7.7%). Aminoglycosides had a dichotomous behaviour in relation to meropenem MIC increase. The resistance rate for gentamicin remained <20% across all meropenem MICs; conversely, that for amikacin increased from <20% in the presence of meropenem MIC $\leq 8 \text{ mg/L}$ up to ca. 80% in the presence of meropenem MICs up to 64 mg/L.

Conclusion: The overall susceptibility rates of antimicrobials with Gram-negative activity may vary greatly among KPC-Kp clinical isolates. A tight relationship between meropenem MIC increase and the resistance rate for amikacin was documented.

© 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The spread of *Klebsiella pneumoniae* carbapenemase-producing *Klebsiella pneumoniae* (KPC-Kp) is a major public-health concern in many parts of the world, including Italy where it is raised to endemic proportions nowadays [1]. Although no definitive therapeutic approach against KPC-Kp infections has been established, treatment with high-dose prolonged-infusion

meropenem, in combination with other active anti-Gram-negative antibacterials, appears to be helpful when dealing with KPC-Kp isolates with a meropenem minimum inhibitory concentration (MIC) of <16 mg/L [2,3].

More recently, we showed that treatment with high-dose continuous-infusion meropenem optimised by means of real-time therapeutic drug monitoring (TDM) may represent a valuable tool in improving clinical outcome even when dealing with infections caused by KPC-Kp with meropenem MICs of 32-64 mg/L [4]. Specifically, maintenance of meropenem steady-state concentrations (C_{ss}) above the MIC for the entire dosing interval (up to a maximum of 100 mg/L) was significantly associated by univariate analysis with successful clinical outcome [C_{ss} /MIC ratio \geq 1: odds ratio (OR) = 10.556, 95% confidence interval (CI) 1.612–69.122;

^{*} Corresponding author. Present address: Institute of Clinical Pharmacology, Santa Maria della Misericordia University Teaching Hospital of Udine, P.le S. Maria della Misericordia 3, 33100 Udine, Italy.

E-mail address: federico.pea@asuiud.sanita.fvg.it (F. Pea).

https://doi.org/10.1016/j.jgar.2018.05.005

^{2213-7165/© 2018} International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

P = 0.014; C_{ss} /MIC ratio \geq 4: OR = 12.250, 95% CI 1.268-118.361; P = 0.030] [5].

Subsequent population pharmacokinetic/pharmacodynamic (PK/PD) analysis showed that this strategy may be reliable in clinical settings with a high proportion (\geq 70%) of KPC-Kp clinical isolates with a meropenem MIC \leq 32 mg/L and with a low proportion (\leq 10%) of isolates with an MIC > 64 mg/L [5]. Consistently, knowledge of the meropenem MIC distribution up to 64 mg/L may be pivotal in defining whether or not clinicians should consider including meropenem in the treatment of KPC-Kp infections.

The purpose of this study was to assess the meropenem MIC distribution and the susceptibility to other antimicrobials with Gram-negative activity against KPC-Kp clinical isolates collected at our hospital in 2013–2016. In addition, it was tested whether meropenem MIC increase against KPC-Kp may be correlated with resistance rates against those antimicrobials with Gram-negative activity that are used for the management of KPC-Kp infections.

2. Methods

This study retrospectively assessed the MIC distribution for meropenem and the susceptibility to antimicrobials with Gram-negative activity against KPC-Kp clinical isolates collected at a tertiary hospital in Italy between 2013–2016. Phenotypic screening and confirmation of carbapenemase production was performed according to current guidelines [6].

Antimicrobial susceptibility of the KPC-Kp strains was tested by the broth microdilution method using SensititreTM (TREK Diagnostic Systems; Thermo Scientific, Cleveland, OH; distributed in Italy by Biomedical Service) and the results were interpreted according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations. Since the EUCAST breakpoint system did not reach a definite position on how to interpret the intermediate category [7], for the purpose of this study strains with intermediate susceptibility were considered as resistant.

Since 2012 at our hospital, SensititreTM susceptibility plates for testing antimicrobials against multidrug-resistant (MDR) Gram-negative pathogens (Enterobacteriaceae, *Pseudomonas aeruginosa* and *Acinetobacter baumannii*) are customised as shown

in Table 1. For several antimicrobials, mainly β -lactams, MIC ranges have been extended far above the EUCAST clinical breakpoints. The intent was that of knowing whether resistance associated with MDR Gram-negative bacteria may be overcome by means of PK/PD optimisation of exposure to antimicrobials with Gram-negative activity, as suggested by Cohen [8].

In the present study, the MIC distribution of KPC-Kp strains for meropenem (from 0.5 mg/L to 64 mg/L) was analysed in relation to the frequency of resistance rates only of those antimicrobials with Gram-negative activity that are usually suggested for combination with meropenem in the treatment of KPC-Kp infections, namely fluoroquinolones (ciprofloxacin and levofloxacin), aminoglycosides (amikacin and gentamicin), colistin and tigecycline [2,9]. Plates were incubated for 24 h in a SensititreTM ARISTM incubator set at 35–37 °C. Software for automatic reading of antimicrobial susceptibility was set to interpretive criteria based on EUCAST guidelines.

3. Results

A total of 169 consecutive KPC-Kp clinical isolates were isolated from urine (64/169; 37.9%), blood (43/169; 25.4%), respiratory tract (14/169; 8.3%), skin and soft-tissue bioptic samples (12/169; 7.1%), bile (7/169; 4.1%) and rectal swabs (29/169; 17.2%).

Overall, 45 (26.6%) of the KPC-Kp clinical isolates were susceptible to meropenem (MIC ≤ 2 mg/L). Among the meropenem-resistant KPC-Kp isolates (73.4%; 124/169), 26.6% (33/124) had an MIC of 4–8 mg/L, 58.9% (73/124) had an MIC between 16–64 mg/L and only 14.5% (18/124) had an MIC > 64 mg/L. Regarding the other antimicrobials with Gram-negative activity, the overall resistance rate was very high both for ciprofloxacin and levofloxacin (99.0%), was moderate for amikacin (37.4%) and was quite low for gentamicin (11.2%), colistin (8.2%) and tigecycline (7.7%).

Fig. 1 depicts the MIC distribution frequencies for meropenem for KPC-Kp clinical isolates in relation to the proportion of resistance rate against the other antimicrobials with Gramnegative activity. Resistance rates for ciprofloxacin and levofloxacin were always very high (>80%) irrespective of the meropenem MIC. Regarding the aminoglycosides, amikacin and gentamicin had

Table 1

SensititreTM broth microdilution 96-well plate customised for antimicrobial susceptibility testing, and minimum inhibitory concentration (MIC) distribution of antimicrobials against multidrug-resistant Gram-negative isolates. Tested MICs (mg/L) for each antimicrobial are reported within the wells.

	1	2	3	4	5	6	7	8	9	10	11	12
А	TZP	TZP	TZP	TZP	TZP	TZP	TZP	COL	COL	COL	COL	COL
	128/4	64/4	32/4	16/4	8/4	4/4	2/4	8	4	2	1	0.5
В	CTX	CTX	CTX	CTX	CTX	CTX	CTX	DOR	DOR	DOR	DOR	DOR
	4	2	1	0.5	0.25	0.12	0.06	8	4	2	1	0.5
С	CIP	CIP	CIP	CIP	CIP	CIP	FEP	FEP	FEP	FEP	FEP	FEP
	2	1	0.5	0.25	0.12	0.06	32	16	8	4	2	1
D	TGC	TGC	TGC	TGC	TGC	TGC	SXT	SXT	SXT	SXT	NIT	NIT
	4	2	1	0.5	0.25	0.12	4/76	2/38	1/19	0.5/9.5	64	32
Е	AMK	AMK	AMK	LVX	LVX	LVX	AMC	AMC	AMC	SAM	SAM	SAM
	16	8	4	4	2	1	8/2	4/2	2/2	32/16	16/8	8/4
F	IPM	IPM	IPM	IPM	IPM	GEN	GEN	GEN	FOS ^a	FOS ^a	FOS ^a	ETP
	16	8	4	2	1	4	2	1	64	32	16	1
G	CAZ	CAZ	CAZ	CAZ	CAZ	CAZ	CAZ	CAZ	CAZ	CAZ	CAZ	CON
	128	64	32	16	8	4	2	1	0.5	0.25	0.12	
Н	MEM	MEM	MEM	MEM	MEM	MEM	MEM	MEM	MEM	MEM	CON	CON
	64	32	16	8	4	2	1	0.5	0.25	0.12		

TZP, piperacillin/tazobactam; COL, colistin; CTX, cefotaxime; DOR, doripenem; CIP, ciprofloxacin; FEP, cefepime; TGC, tigecycline; SXT, trimethoprim/sulfamethoxazole; NIT, nitrofurantoin; AMK, amikacin; LVX, levofloxacin; AMC, amoxicillin/clavulanic acid; SAM, ampicillin/sulbactam; IPM, imipenem; GEN, gentamicin; FOS, fosfomycin; ETP, ertapenem; CAZ, ceftazidime; CON, control; MEM, meropenem; EUCAST, European Committee on Antimicrobial Susceptibility Testing.

EUCAST clinical breakpoints for the Enterobacteriaceae (susceptible/resistant expressed in mg/L): AMC, ≤8/>8; SAM, ≤8/>8; SAM, ≤8/>8; FEP, ≤1/>4; CTX, ≤1/>2; CIP, ≤0.5/>1; COL, ≤2/>2; CAZ, ≤1/>4; DOR, ≤1/>4; ETP, ≤0.5/>1; FOS, ≤32/>32; GEN, ≤2/>4; IPM, ≤2/>8; LVX, ≤1/>2; MEM, ≤2/>8; NIT, ≤64/>64; TZP, ≤8/>16; SXT, ≤2/>4; TGC, ≤1/>2.

^a Data for FOS were not presented since susceptibility was not determined by the agar dilution method as recommended by EUCAST.

Download English Version:

https://daneshyari.com/en/article/8746125

Download Persian Version:

https://daneshyari.com/article/8746125

Daneshyari.com