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a b s t r a c t

We developed a Kalman smoothing algorithm to improve estimates of joint kinematics from measured

marker trajectories during motion analysis. Kalman smoothing estimates are based on complete marker

trajectories. This is an improvement over other techniques, such as the global optimisation method

(GOM), Kalman filtering, and local marker estimation (LME), where the estimate at each time instant is

only based on part of the marker trajectories. We applied GOM, Kalman filtering, LME, and Kalman

smoothing to marker trajectories from both simulated and experimental gait motion, to estimate the

joint kinematics of a ten segment biomechanical model, with 21 degrees of freedom. Three simulated

marker trajectories were studied: without errors, with instrumental errors, and with soft tissue

artefacts (STA). Two modelling errors were studied: increased thigh length and hip centre dislocation.

We calculated estimation errors from the known joint kinematics in the simulation study. Compared

with other techniques, Kalman smoothing reduced the estimation errors for the joint positions, by more

than 50% for the simulated marker trajectories without errors and with instrumental errors. Compared

with GOM, Kalman smoothing reduced the estimation errors for the joint moments by more than 35%.

Compared with Kalman filtering and LME, Kalman smoothing reduced the estimation errors for the joint

accelerations by at least 50%. Our simulation results show that the use of Kalman smoothing

substantially improves the estimates of joint kinematics and kinetics compared with previously

proposed techniques (GOM, Kalman filtering, and LME) for both simulated, with and without modelling

errors, and experimentally measured gait motion.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse kinematics, the estimation of joint kinematics based on
measured trajectories of skin-mounted markers, is complicated
by instrumental errors and soft tissue artefacts (STA) (Cappozzo
et al., 1996; Chiari et al., 2005; Leardini et al., 2005).

Different techniques to reduce the effect of these errors on the
estimated joint kinematics have been proposed (Chiari et al.,
2005; Leardini et al., 2005). Spoor and Veldpaus (1980) estimated
the positions and orientations of each body segment separately
using a segmental optimisation method (SOM). SOM minimises
the marker displacement in the segmental reference frame
between any two time instants. Lu and O’Connor (1999) used a
multi-link model relating the marker positions to the generalized
co-ordinates that describe the motion of the body segments along
the degrees of freedom (DOFs). At each time instant, their global

optimisation method (GOM) estimates all generalized co-
ordinates at once from a weighted nonlinear least-squares fit
between the measured marker positions and those predicted by
the model. GOM outperformed SOM in simulation for a serial
three-link model (pelvis, thigh, and shank) joined by two
spherical joints (hip and knee), suggesting that imposed joint
constraints reduce the effect of errors. Cerveri et al. (2003a, b)
used a Kalman filter to estimate joint kinematics. Kalman filtering
(KF) is based on a measurement model obtained from the
biomechanical model and a process model, which includes prior
knowledge about the smoothness of the motion. In addition, the
generalized co-ordinates, velocities, and accelerations are esti-
mated simultaneously. Cerveri et al. (2005) proposed local marker
estimation (LME), an extension of KF to estimate marker
displacements in the segmental reference frames to account for
STA. In their simulation study (Cerveri et al., 2005) in which
systematic, sinusoidal perturbations added to the three thigh
markers modelled STA, LME estimates were at least 50% more
accurate than SOM estimates.

KF has two potential advantages over GOM. Firstly, including
knowledge about motion smoothness may improve the accuracy
of estimated joint kinematics. Secondly, estimating accelerations
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eliminates the need to differentiate generalized co-ordinates
numerically, which can introduce large errors. As these accelera-
tions, in addition to the measured ground reaction forces, are the
input for inverse dynamics to calculate joint moments, more
accurate joint acceleration estimates will improve the accuracy of
joint kinetics. Since Cerveri et al. (2005) did not compare LME
with GOM, these advantages have not yet been confirmed.

A drawback of KF is the asymmetrical use of data. At each time
instant, estimates are based on the measured marker trajectories
up to the considered time instant only. We therefore propose
Kalman smoothing (KS) (Rauch et al., 1965), a combination of two
filters, to calculate the estimates at each time instant based on the
complete marker trajectories. The proposed KS is an extension of
the Kalman filter without LME. The purpose of this study was to
compare the accuracies of the generalized co-ordinates and
accelerations using GOM, KF, LME, and KS using both simulated
marker trajectories, with and without modelling errors, and
experimentally measured marker trajectories during gait.

2. Kalman Smoothing algorithm

The Kalman smoother (Bar-Shalom and Li, 1993; Rauch et al.,
1965) combines prior knowledge, described by a process and
measurement model, with the measured marker trajectories to
produce an estimate of the joint kinematics while minimising the
estimation error statistically. The generalized co-ordinates q and
their derivatives up to the Kth order, which describe the joint
kinematics, are collected in a vector x:

x ¼ ½q1qð1Þ1 . . .qðKÞ1 q2qð1Þ2 . . . qðKÞ2 . . . qJq
ð1Þ
J . . . qðKÞJ �

T,

with j ¼ 1yJ indicating the DOF and qj
(k) the kth time derivative

of qj.
The process model describes the expected time evolution of

the joint kinematics x and is composed of J submodels describing
the motion of each DOF. While the submodels are based on the
assumption that the Kth derivative of the generalized co-ordinate
qj

(K) is constant, a noise term nj takes into account the errors
introduced by this assumption:
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with t is the time, I ¼ 1yI indicates the time instant, and Dt is the
sample time. The (K+1)th derivative of the generalized co-ordinate
is modelled as zero mean Gaussian noise with covariance s2

Kþ1;j.
Therefore, the process noise is given by

njðtÞ ¼ Nð0;QjÞ with Qj ¼ s2
Kþ1;jG

TG and

G ¼ DtKþ1

ðKþ1Þ!
DtK

K! Dt
h i

.

The measurement model relates the joint kinematics x(t) to the
measured marker positions, collected in z(t). This model is
composed of a noiseless measurement model h(x(t)) and mea-
surement noise v(t):

zðtÞ ¼ hðxðtÞÞ þ vðtÞ

The noiseless measurement model h(x(t)) is based on a
biomechanical model consisting of ten body segments including
21 DOFs (Fig. 1, Delp et al., 1990). The measurement noise, v(t), is
drawn from a zero mean Gaussian distribution and expresses the
uncertainty for the marker position measurements.

KS has two consecutive steps. First, a Kalman filter (Kalman,
1960) estimates the joint kinematics at ti using only the measured
marker trajectories up to ti. Second, a backward recursion using
the measured marker trajectories from the last instant down
to ti, follows the Kalman filter. The resulting Kalman smoother
estimates the generalized co-ordinates and their derivatives based
on all the information available: the complete marker trajectories,
the process model, and the measurement model. An extended
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Fig. 1. Biomechanical model and marker placement protocol. The biomechanical

model consists of ten body segments: a head–arms–trunk segment, the pelvis, left

and right thigh, shank, hindfoot and forefoot (Delp et al., 1990). This model

includes 21 DOFs. Spherical joints connect the head–arms–trunk segment to the

pelvis and the pelvis to the thighs. The ankle and subtalar joints are modelled as

simple hinges, whereas the knee joints are modelled as sliding hinges (Yamaguchi

and Zajac, 1989). The remaining six DOFs correspond to the position and

orientation of the pelvis. The generic biomechanical model was scaled to

the subject’s dimensions. A modified Cleveland marker placement protocol

(Sutherland, 2002) was used for the data collection. The marker set consisted of

30 markers, including five clusters of three markers. Three anatomical markers

defined the trunk: a marker on the lateral aspects of the left (1) and right (2)

shoulder and a marker on the sternum (3). The pelvis segment is defined by a

cluster of three technical markers on the sacrum (4a–c) and two anatomical

markers on the left (5) and right (6) anterior superior iliac spine (ASIS). The thigh

segment is defined by a cluster of three technical markers (7a–c). The shank

segment is defined by a cluster of three technical markers (8a–c), an anatomical

marker on the lateral epicondyle (9), and an anatomical marker on the lateral

malleolus (10). The foot segment is defined by three anatomical markers on the

heel (11), the lateral foot (12) and the first metatarsal head (13). During a static

calibration trial, additional anatomical markers were added to the medial femoral

condyles and the medial malleoli to define the knee and ankle joint axis.
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