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a b s t r a c t

Experiments in human ligaments revealed that the rate of stress relaxation in such materials is strain

dependent. This nonlinear behavior requires therefore a modified description of the standard

quasilinear viscoelasticity theory commonly used in tissue biomechanics. The goal of this study is to

characterize and demonstrate the importance of the nonlinear stress-relaxation behavior of ligaments

undergoing finite deformation. The structural model presented herein is based on a local additive

decomposition of the stress tensor into initial and non-equilibrium parts as resulted from the assumed

structure of the free energy density function that generalizes Kelvin–Voigt nonlinear viscous models.

We consider different viscoelastic behavior for the matrix and the fibers and the need of considering the

strain dependency of this effect is clearly demonstrated.

Model parameters were fit to experimental data obtained in specimens undergoing finite

deformation in two directions: longitudinal and transversal with respect to the directions of the

collagen fibers. The model was then tested against several multi-axial loading situations. The strain

dependent relaxation and the strain rate dependent behavior of the human medial collateral ligament

were accurately predicted.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The stretch and time-dependent behavior of biological tissues
has been widely investigated by means of experimental tests. For
example, Hingorani et al. (2004) and Bonifasi-Lista et al. (2005)
found that ligaments exhibit a clear nonlinear viscoelastic
response. They found that the creep rate depends on the applied
stress and that the relaxation rate depend on the applied stretch.
Silver et al. (2003) found a rate dependent mechanical behavior of
the porcine aorta, vena cava and carotid artery. Other authors
found time-dependent material behavior of blood vessels (Hum-
phrey, 1995), cornea (Pinsky and Datye, 1991), brainstem (Ning
et al., 2006), aortic valves (Grashow et al., 2006), pericardium
(Sacks, 2000) and articular cartilage (Hayes and Mockros, 1971).

A full description of the mechanical response of soft biological
tissue requires therefore including its nonlinear viscoelastic
behavior. Considering therefore that the viscoelastic response is
strain dependent in the low strain range and considering that the
physiological loads on ligaments induce mostly low strains, a

nonlinear viscoelastic model may gain a great relevance (Vena
et al., 2006). For example, a strain dependent viscoelastic
constitutive model is essential to simulate the complex loading
conditions occurring in clinical application, such as the evolution
along time of the initial prestress in bone–patellar tendon–bone
grafts (Kampen et al., 1998).

Many viscoelastic constitutive models have been proposed to
model biological soft tissues. A theory of quasilinear viscoelasti-
city was early proposed by Fung and is still widely used in the
field of biomechanics (Fung, 1993). This model has, however, an
important drawback: the information must be saved at every
previous time step. Puso and Weiss (1998) formulated a time
discretization algorithm of the convolution integral in which the
relaxation function and the elastic constitutive behavior were
split by means of a multiplicative decomposition, thus reducing
the nonlinear response of the tissue to the latter. Other papers like
those by Pioletti et al. (1998), Merodio and Goicolea (2007) and
Merodio and Rajagopal (2007) modelled the isotropic and
transversely isotropic viscohyperelastic behavior of ligaments by
defining a viscous potential which involved 10 and 15 invariants,
respectively. Other approaches for viscoelasticity are due to
Johnson et al. (1996) and Vena et al. (2006) among others. There,
the elastic response of the tissue and the time-dependent
properties are independently modelled and combined into a
convolution time integral. Provenzano et al. (2002) used a more
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general description using the nonlinear theory of Schapery or the
modified superposition method (Schapery, 1969). For a complete
revision of nonlinear viscoelastic models see Drapaca et al. (2007)
and references therein.

A more recent strategy to build a viscoelastic model writes the
Helmholtz free energy density function as the sum of a
hyperelastic term and a viscous term (Kaliske, 2000; Holzapfel
et al., 2000; Natali et al., 2004, 2008; Peña et al., 2007a). The
stress then expresses as the sum of an elastic component and a
dissipative component, this latter defined in terms of several
internal variables leading to generalized Maxwell (Holzapfel et al.,
2000; Kaliske, 2000) or Kelvin–Voigt (Peña et al., 2007a) models
for the viscous component. The main advantage of those models is
the easy and efficient implementation of the resulting finite strain
formulation and the associated algorithmic discretization into a
finite element code. In addition, the models in Holzapfel et al.
(2000) and Peña et al. (2007a) consider different viscoelastic
behaviors for the matrix and the different families of fibers. In all
cases the assumed dissipation is controlled by a set of linear
differential equations, so the evolution equations obtained are
linear, discarding therefore the stretch-dependence of the relaxa-
tion rate (Hingorani et al., 2004).

The objective of this paper is to present a more general
viscoelastic model for the simulation of the response of ligaments.
In particular, we have modified the fully 3D finite strain
anisotropic viscohyperelastic Kelvin–Voigt model presented in
Peña et al. (2007a) to predict the creep rate dependence on the
applied stress and the relaxation rate dependence on the applied
strain. We propose modified evolution equations that consider
reduced relaxation and time functions that are strain dependent
and different viscoelastic parameters for the matrix and the fibers.

2. Model formulation

Based on well-known experimental results previously pub-
lished (Quapp and Weiss, 1998; Bonifasi-Lista et al., 2005; Woo
and Young, 1991), the ligaments were assumed to be anisotropic
hyperelastic materials. Since most biological soft tissues exhibit
time-dependent behavior, an anisotropic viscoelastic model was
developed to describe the here assumed nonlinear viscoelastic
response of ligaments under large deformation (Peña et al.,
2007b).

2.1. Anisotropic hyperelastic response of soft tissues

An usual way to formulate the elastic constitutive response of
fibered soft tissues is to postulate the existence of a strain energy
density function that depends on the direction of each family of
fibers at a point X (two families were here considered with their
directions defined by the unit vector fields m0 and n0, Peña et al.,
2007b). The fiber moves with the material points of the
continuum body, so the stretches lm and ln of the fibers defined
as the ratio between their lengths at the deformed and reference
configurations can be expressed as

l2
m ¼m0 � Cm0; l2

n ¼ n0 � Cn0 (1)

where m ¼ Fm0 and n ¼ Fn0 are the unit vector of the fibers in
the deformed configuration, F ¼ dx=dX and C ¼ FTF are the
standard deformation gradient and the corresponding right
Cauchy–Green strain measure.

To characterize isothermal processes, we postulate the ex-
istence of a unique decoupled representation of the strain energy
density function C (Simo and Taylor, 1991) that explicitly depends
on both the right Cauchy–Green tensor C and the fiber directions

m0 and n0 as (Spencer, 1954)

CðC;m0;n0Þ ¼ CvolðJÞ þ C̄ðC̄;M;NÞ

¼ CvolðJÞ þ C̄ðĪ1; Ī2; Ī4; Ī6Þ (2)

where CvolðJÞ and C̄ are given scalar-valued functions of J, C̄, M ¼
m0 �m0 and N ¼ n0 � n0, respectively, that describe the volu-
metric and isochoric responses of the material (Holzapfel, 2000),
Ī1 and Ī2 are the first two modified strain invariants of the
symmetric modified Cauchy–Green tensor C̄ (F ¼ J1=3F̄ and
C ¼ J2=3C̄). Finally, the pseudo-invariants Ī4; Ī6 characterize the
kinematic response of the fibers (Spencer, 1954)

Ī4 ¼ C : M ¼ l2
m; Ī6 ¼ C : N ¼ l2

n (3)

Note that while the invariants I4 and I6 have a clear physical
meaning, the square of the stretch l in the fibers directions, the
influence of other invariants (I5, I7 and I8, see Holzapfel, 2000) is
difficult to evaluate due to the high correlation between them. For
this reason and the lack of sufficient experimental data it is usual
not to include these invariants in the definition of C.

From the Clausius–Planck inequality, we obtain the constitu-
tive equation for compressible hyperelastic materials as

S ¼ 2
qCðC;MÞ

qC
¼ Svol þ S̄ ¼ JpC�1

þ S̄ (4)

where the second Piola–Kirchhoff stress S consists of a purely
volumetric contribution Svol and a purely isochoric one S̄ and p is
the hydrostatic pressure.

The Cauchy stress tensor r is 1=J times the push-forward of S
ðr ¼ J�1v�ðSÞÞ and is written as (Simo and Hughes, 1998)

r ¼ p1þ
2
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qĪ6

Ī6

� �
1

�
(5)

with I the second-order identity tensor, and b ¼ F̄F̄T and b̄ ¼
J�2=3b the left and modified left Cauchy–Green tensors, respec-
tively.

The associated decoupled elasticity tensor may be written as
(Holzapfel, 2000)

C ¼ Cvol þCiso ¼ 2
qSvol

qC
þ 2

qSiso

qC
(6)

The complete expression of the elasticity tensor (6) in material
and spatial descriptions is included for instance in Holzapfel
(2000).

2.2. Time-dependent response under large deformation

In order to describe the viscoelastic effect we consider the
finite strain anisotropic viscoelastic constitutive model proposed
in Peña et al. (2007a). The concept of internal variable (Simo,
1987) is here applied, postulating the existence of an uncoupled
free energy density function CðC;Q Þ of the form

CðC;M;Q ijÞ ¼ C0
volðJÞ þ C̄0

�
1

2

Xn

i¼1

X
k¼m;f 1 ;f 2

ðC̄ : Q ikÞ

þX
Xn

i¼1

X
k¼m;f 1 ;f 2

Q ik

0
@

1
A (7)

where Q ik may be interpreted as non-equilibrium stresses, in the
sense of non-equilibrium thermodynamics, and remain unaltered
under superposed spatial rigid body motions. Q im are the isotropic
contribution due to the matrix material associated therefore to I1
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