
Medical Engineering and Physics 38 (2016) 885–894 

Contents lists available at ScienceDirect 

Medical Engineering and Physics 

journal homepage: www.elsevier.com/locate/medengphy 

Impact of anomalous transport kinetics on the progress of wound 

healing 

E. Javierre 

∗

Centro Universitario de la Defensa, Academia General Militar, Ctra. Huesca s/n. 50090 Zaragoza, Spain 

a r t i c l e i n f o 

Article history: 

Received 22 September 2015 

Revised 12 February 2016 

Accepted 3 April 2016 

Keywords: 

Subdiffusion 

Superdiffusion 

Fractional viscoelasticity 

Wound healing 

Fractional partial differential equations 

a b s t r a c t 

This work focuses on the transport kinetics of chemical and cellular species during wound healing. 

Anomalous transport kinetics, coupling sub- and superdiffusion with chemotaxis, and fractional viscoelas- 

ticity of soft tissues are analyzed from a modeling point of view. The paper presents a generalization of 

well stablished mechano-chemical models of wound contraction (Murphy et al., 2012; Valero et al., 2014) 

to include the previously mentioned anomalous effects by means of partial differential equations of frac- 

tional order. Results show the effect that anomalous dynamics have on the contraction rate and extension 

and on the distribution of biological species, and indicators of fibroproliferative disorders are identified. 

© 2016 IPEM. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Wound healing is a complex and highly intricate phenomenon 

that evolves over three major phases (inflammation, proliferation 

and remodeling) that overlap on time [3] . A key aspect on the 

timely development of these phases rests on the mobilization (i.e. 

migration and/or diffusion) and the communication of appropriate 

cellular and biochemical species, coupled with the mechanical sta- 

tus of the affected tissue. In this process, cells play a crucial role 

acting as sensors and transducers of the mechanical and biochem- 

ical signals [4] . A successful path to complete and fully functional 

healing of the wound is obtained only when biological signals are 

sent and interpreted on due time, starting with the coagulation 

cascade and finalizing with the remodeling of the scar tissue. 

The causes behind an impaired healing are frequently related to 

local hypoxia, infection (or prolonged inflammatory response) and 

altered cellular response to stress [5] . These pathologies are fre- 

quent in diabetic ulcers and pressure ulcers. Diabetes prolongs the 

inflammatory response and degrades the granulation tissue, delay- 

ing the reepithelialization of the wound and the recovery of its 

tensile strength [4] . Diabetes also hinders vascular ingrowth, af- 

fecting directly to the oxygenation of the surrounding tissue, nec- 

essary to sustain cellular function. Tissue hypoxia and subsequent 

necrosis are characteristic features of pressure ulcers, that appear 
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on load bearing regions on patients with reduced or impeded 

mobility [6] . 

Conventionally, wound healing has been investigated from an 

experimental perspective, mainly focused on in vitro models of cell 

migration and cell force estimation [7] . Although more scarcely, 

animal models have also been developed to investigate wound 

closure [8–10] . This work, however, looks at the development of 

in silico models to study the course of wound healing. Tradition- 

ally, mathematical models have been developed from a continuous 

and macroscopic perspective giving rise to systems of diffusion- 

convection-reaction equations that couple the interactions between 

different types of cellular species, growth factors and the tissue de- 

formation. The interested reader is referred to [11] , and references 

therein, to find an extensive review of the state of the art in wound 

healing models. 

The above-mentioned models rest on a macroscopic approxi- 

mation of transport kinetics based on a Gaussian distribution of 

particle jumps. This gives raise to homogeneous diffusion terms 

and homogeneous diffusion–reaction systems. These type of equa- 

tions capture qualitatively the formation of patterns, and allow to 

correlate these patterns to physically measurable parameters. An 

example of this is the development of traveling waves in nonlin- 

ear reaction–diffusion equations. However, anomalous transport ki- 

netics are frequent on biological processes. These kinetics present 

a mean square displacement proportional to a power of time, 

〈 �x ( t ) 2 〉∝ t α , where the power α differs from 1. When α < 1, 

the transport is referred as subdiffusive, while when α > 1 it is 

known as superdiffusive. Subdiffusion is characteristic in materi- 

als of an hierarchical structure, where the diffusing particles may 
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get trapped during transport. It has been reported in porous me- 

dia [12] and in the transport of molecules at the cellular level 

[13–15] . On the other hand, superdiffusion presents random walks 

with an enhanced travel distance, known as Lévy flights. In biology, 

Lévy flights have been used to analyze the evolution of epidemics 

[16,17] . An excellent review of modeling aspects and fields of appli- 

cation of sub- and superdiffusion processes can be found [18] . The 

formulation of these phenomena from a homogenized and contin- 

uous perspective is achieved by means of partial differential equa- 

tions of fractional order [19] . However, to the author’s knowledge, 

anomalous diffusion has not been applied yet to study (patholog- 

ical) wound healing despite its great potential to explain altered 

transport kinetics. 

Hence, this work revisits a well established contraction and clo- 

sure model [1,2] to incorporate anomalous transport kinetics. Frac- 

tional order kinetics will be incorporated for the evolution of a mi- 

totic and chemotactic growth factor (which takes into account the 

combined effects of PDGF and TFG- β), the density of fibroblasts 

and the deformation of the tissue. Thus, a physically based system 

of fractional partial differential equations that includes sub- and 

superdiffusion from a continuum perspective will be presented. 

The constructed fractional order model will be used to infer the 

impact of anomalous transport kinetics on the progress of healing. 

2. Fractional order partial differential equations 

In order to introduce the nomenclature and formulation of the 

governing equations, the basic definitions of the fractional order 

differential and integral operators will be given first. In that con- 

text, the Riemann–Liouville and Caputo definitions are considered. 

In the presentation, the notation used by Mainardi [20] will be 

used without loss of generality. 

The Riemann–Liouville (RL henceforth) definition of a fractional 

order integral operator or order α ( α > 0 in this notation) of a 

scalar function f ( t ) fulfilling f (t) = 0 for all t < 0 is given by 

RL 
0 I 

α
t f (t) = 

1 

�(α) 

∫ t 

0 

(t − τ ) α−1 f (τ ) dτ, (1) 

where I is introduced to denote the integral operator and � de- 

notes the Gamma function. The Riemann-Liouville fractional order 

differential operator acting of f is defined as the m th order deriva- 

tive of the (m − α) th order integral of f , that is, 

RL 
0 D 

α
t f (t ) = 

d m 

dt m 

(
RL 

0 I 
m −α
t f (t ) 

)
, (2) 

where m is the smallest natural number above α (that is m − 1 ≤
α < m, m ∈ N ). This result in the usual definition of the fractional 

order derivative 

RL 
0 D 

α
t f (t) = 

1 

�(m − α) 

d m 

dt m 

∫ t 

0 

( t − τ ) m −α−1 f ( τ ) dτ, (3) 

where D has been introduced to denote the fractional order differ- 

ential operator. These definitions ( Eqs. (1) and (3) ) extrapolate the 

natural order integral and differential operators, that is, they coin- 

cide with the n th order integral and derivative of function f when 

α = n . 

An alternative definition of the fractional order derivative is due 

to Caputo (C henceforth), which interchanges the order of the inte- 

gral and differential operators in the Riemann–Liouville definition 

C 
0 D 

α
t f (t) = 

RL 
0 I 

m −α
t 

(
d m f (t) 

dt m 

)
, (4) 

where again m is the smallest natural number above α. This 

change effectively results in the definition 

C 
0 D 

α
t f (t) = 

1 

�(m − α) 

∫ t 

0 

( t − τ ) m −α−1 d 
m f 

dt m 

( τ ) dτ. (5) 

This definition of the derivative operator coincides with the nat- 

ural order derivative only when the order α approaches m (from 

the left). For values of α approaching to m − 1 (from the right) the 

following relation holds [21] 

lim 

α→ (m −1) + 
C 
0 D 

α
t f (t) = 

d m −1 f 

dx m −1 
(t) − d m −1 f 

dx m −1 
(0 

+ ) . (6) 

Thus, the Caputo derivative extrapolates the classical derivative 

only for functions with all its derivatives vanishing at the ori- 

gin. This subtle constrain connects with the relation between the 

Riemann–Liouville and Caputo differential operators [20] , which is 

C 
0 D 

α
t f (t) = 

RL 
0 D 

α
t f (t) −

m −1 ∑ 

k =0 

d k f 

dt k 
(0 

+ ) 
t k −α

�(k − α + 1) 
. (7) 

A consequence of Eq. (7) is that the Riemann–Liouville and Caputo 

derivatives coincide on all functions f with vanishing derivatives at 

origin. 

Another important subject on the formulation of fractional or- 

der differential equations is proper definition of the initial con- 

ditions (or boundary conditions in a general context). The Ca- 

puto formulation allows for the use of natural order derivatives, 

which connects directly with physical interpretation of the prob- 

lem. However, the Riemann–Liouville formulation requires the use 

of fractional order initial conditions, of the type 

lim 

t→ 0+ 
RL 

0 D 

α−k 
t f (t) = f k (8) 

for 1 ≤ k ≤ m , which gives raise to both fractional order inte- 

grals and derivatives evaluated at the origin. These type of ini- 

tial (or boundary) conditions result in practice more difficult to 

connect to the physical background. In that respect, Heymans and 

Podlubny [22] analyze the physical interpretation of these condi- 

tions in the framework of fractional viscoelasticity for certain load 

regimes, and Podlubny [23] provide a general discussion of these 

conditions. However, many authors have chosen to deal with ho- 

mogeneous initial (and boundary) conditions [24–26] or directly 

formulate the problem in terms of the Caputo derivative [21,27] in 

order to overcome this issue. 

2.1. Fractional order diffusion equations 

In the field of biology, anomalies in the diffusion pattern have 

been reported for molecular transport at the cellular level (on the 

cell membrane [28] and on the cytoplasm [29] ) and at the tis- 

sue level (water molecules on rats brain [30] and electric fronts 

in cardiac muscles [31] ). Anomalous migration of fibroblasts has 

also been observed on in vitro assays [32] relating the migration 

kinetics with cytoskeletal disruption during anti-cancer drug treat- 

ment. The physical justification for these observations rests on the 

structural heterogeneity of the transport medium. This heterogene- 

ity may cause that macromolecules get temporally trapped, effec- 

tively delaying the diffusion front, or that molecules travel arbitrar- 

ily large distances, effectively accelerating the diffusion front. 

A macroscopic approximation of the above described transport 

kinetics is obtained through the formulation of a fractional order 

diffusion equation for the diffusing species. The fractional order 

differential operator can be introduced in the temporal variable 

(giving raise to subdiffusion) or in the spatial variable (giving raise 

to superdiffusion). In general, when the fractional differential oper- 

ators act on both the temporal and spatial variables, the so-called 

anomalous diffusion pattern is obtained. For the remaining of the 

section, the variable c = c(x, t) will denote the concentration at lo- 

cation x and at time t of a general purpose diffusing specie. 
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