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a b s t r a c t

Deformable joint contact models can be used to estimate loading conditions for cartilage–cartilage, implant–

implant, human–orthotic, and foot–ground interactions. However, contact evaluations are often so expensive

computationally that they can be prohibitive for simulations or optimizations requiring thousands or even

millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact mod-

eling method based on artificial neural networks (ANNs). The method uses special sampling techniques to

gather input–output data points from an original (slow) contact model in multiple domains of input space,

where each domain represents a different physical situation likely to be encountered. For each contact force

and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and

incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate

contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic founda-

tion (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times

faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven

times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For

larger input domains, the surrogate contact model showed the expected trend of increasing error with in-

creasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations

with high accuracy. Computational contact models created using our proposed ANN approach may remove

an important computational bottleneck from musculoskeletal simulations or optimizations incorporating de-

formable joint contact models.

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Deformable contact models can be incorporated into multi-body

dynamic simulations to compute the loads resulting from surface–

surface interactions. In musculoskeletal biomechanics, the need to

model deformable contact typically arises when cartilage–cartilage

[1–3], implant–implant [4,5], human–orthotic [6,7], and foot–ground

[8–11] interactions occur. However, deformable contact models are

computationally expensive and thus can be prohibitive for studies

that require large numbers of repeated contact evaluations such as

optimizations and forward dynamic simulations.

Surrogate contact models can provide one solution to this prob-

lem. Surrogate models, also known as meta-models or response sur-

face approximations, fit or interpolate input–output relationships

∗ Corresponding author at: Department of Mechanical & Aerospace Engineering, 231

MAE-A Building, PO Box 116250, University of Florida, Gainesville, FL 32611-6250, USA.

Tel.: +1 352 392 8157; fax: +1 352 392 7303.

E-mail address: fregly@ufl.edu (B.J. Fregly).

sampled from a “slow” computational model (e.g., a finite element or

elastic foundation contact model). The simplest example of a surro-

gate contact model is a response surface or multiple linear regression

model, which has been used to calculate cartilage–cartilage contact

forces in a natural tibiofemoral joint [12]. Kriging is a more complex

surrogate modeling technique that has also been used to model con-

tact forces and torques in the knee [13]. Kriging-based contact models

have been used in an optimization approach that predicted muscle

forces, tibiofemoral contact forces, and patellofemoral contact forces

simultaneously in the knee during walking [14]. Other efforts to cre-

ate surrogate knee contact models include a Hammerstein–Wiener

model, a nonlinear autoregressive model with exogenous input, and

a time delay artificial neural network [15]. In addition, a surrogate

foot–ground contact model has been created using a lazy learning in-

terpolation method [16].

While each of these surrogate contact modeling methods im-

proves computational speed, each also suffers from important limita-

tions. Kriging-based models suffer from two disadvantages. First, only

a relatively low number of sample points can be interpolated given
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a computer’s memory resources. As the number of sample points

increases, so does the necessary memory and computation time

required for model construction and use. Second, the most common

implementation of Kriging interpolates the data instead of regressing

it. This property becomes a disadvantage when the data contain

noise, such as with element-based contact models whenever a pro-

portionately small number of elements are loaded (e.g., at low loads

with a coarse mesh). Hammerstein–Weinner, nonlinear autoregres-

sive and time delay ANN models require knowledge of past configu-

rations in time to evaluate the current configuration of the contacting

bodies. This requirement implies that these methods can be used only

in time-incremented analyses. Lazy learning models have the ad-

vantage of bounding the prediction error and adapting to a changing

domain, but these benefits come at the cost of requiring additional

“slow” contact model evaluations during surrogate model use.

To address the need for fast, accurate, and multi-purpose surro-

gate contact models for musculoskeletal simulations and optimiza-

tions, this study explores the use of multi-layer feed-forward ANN

models. ANNs can be formulated as time-independent regression

problems capable of fitting arbitrary observable functions [17]. Feed-

forward ANNs have been used as black box models in previous non-

contact biomechanical simulations to determine multi-dimensional

input–output relationships [18,19] but have not been explored for

deformable contact applications. Our proposed ANN contact model-

ing approach includes a special sampling technique that seeks to im-

prove computational speed and accuracy over existing Kriging-based

schemes. The method also permits fitting many more sample points

than would be possible with Kriging, allowing for varying levels of

accuracy across multiple domains of input space. Furthermore, the

approach fits the sample points via regression rather than interpola-

tion, effectively smoothing noise in the sampled data points [20]. The

computational speed and accuracy of our ANN contact modeling ap-

proach are evaluated using an elastic foundation (EF) contact model

of an artificial tibiofemoral joint.

2. Methods

2.1. Surrogate contact modeling background

The goal of surrogate contact modeling is to replace a computa-

tionally “slow” contact model with a computationally “fast” contact

model that exhibits the same input–output characteristics. This

process involves sampling the computationally expensive model,

henceforth called the original model, using a sampling plan or design

of experiments. Sampling yields a series of sample points that relate

original model inputs to original model outputs. For multi-body

applications, the inputs to the original model are pose parameters

consisting of three translations and three rotations defining the

position and orientation of one contacting body with respect to the

other. The corresponding outputs of the original model are contact

loads consisting of three contact forces and three torques calculated

with respect to a selected point on one of the contacting bodies.

Finally, testing takes place to evaluate the discrepancy between

the original model and the resulting surrogate model using sample

points not included in the surrogate model construction process.

The method presented in this paper builds upon a previous

study to which the reader is referred for further details [13]. A brief

summary of the most relevant concepts is introduced next. The first

concept is that of fixed and moving bodies. The fixed body is the

contacting body that is conceptually considered to remain fixed in

space, while the moving body is the contacting body conceptually

considered to move. The position and orientation of the moving

body with respect to the fixed body are defined by pose parameters

consisting of three translations and three rotations. The second

concept is that of sensitive directions. A sensitive direction is a

degree of freedom (DOF) which when perturbed causes a relatively

large change in associated contact loads. Every sensitive direction

possesses an associated sensitive pose parameter and one or more

associated sensitive contact loads. For example, if changing the

y-translation by a small amount yields a large contact force change

in the y-direction, then y-translation is a sensitive pose parameter

and y-force is a sensitive load. The third concept is that of a sample

point. A sample point is defined as a set of model inputs and cor-

responding outputs. While one would normally expect to use pose

parameters as inputs and loads as outputs, sample point inputs and

outputs are permitted to be any combination of pose parameters and

loads. For example, sample point inputs could be defined as three

rotations and three forces. The fourth concept is use of sample point

definitions that contain sensitive pose parameters as outputs and

the corresponding sensitive loads as inputs. Sampling in this manner

results in a more desirable distribution of sample points since deeply

interpenetrating and out-of-contact situations can be avoided. Use

of such a sample point definition requires the original model to be

sampled via repeated static analyses.

2.2. Multiple domains

In contrast to surrogate modeling methods such as Kriging, feed-

forward ANNs can fit tens of thousands of sample points. Therefore,

ANNs provide the ability to approximate contact models sampled in

a variety of configurations that have not been previously considered.

This capability motivates a new sampling approach.

Our sampling strategy consists of combining multiple domains of

input space, each with a different span and sample point density.

A large span minimizes the likelihood of evaluating the surrogate

model outside the sampled domain, a situation that would lead to

large prediction errors. A high sample point density leads to low pre-

diction errors within the sampled domain. To maximize model ac-

curacy, we combine sparsely sampled domains having large spans

with densely sampled domains having limited spans that cover re-

gions of input space likely to be encountered during the activity being

simulated.

To define both types of domains, we introduce the concept of a

reference envelope, which we will use to define the upper and lower

bound of a domain. We obtain multiple time-histories of a pose pa-

rameter or load of interest corresponding to the activity to be simu-

lated. Upper and lower bounds for these curves are defined for each

time frame. These bounds comprise the reference envelopes that de-

scribe estimated variations in pose parameters and loads of interest

across the entire motion.

To define a sparsely sampled domain having a large span, we ex-

pand the maximum and minimum values of the reference envelopes

across all time frames by user-specified amounts. The resulting time-

invariant upper and lower bounds define a domain that forms a large

six-dimensional (6-D) hypercuboid input space. This space is filled

using a Hammersley quasirandom sequence [21]. The domain should

exclude physically unrealistic sections of input space corresponding

to contacting surfaces “pulling” on each other.

To define a densely sampled domain having a limited span, we ex-

pand the maximum and minimum bounds of the reference envelopes

at each time frame by user-specified amounts. The resulting time-

varying upper and lower bounds define the domain. For each time

frame of the reference motion, we define a 6-D hypercuboid where

each dimension corresponds to a sample point input. The 64 vertices

of each 6-D hypercuboid are sampled, and the interior of each hyper-

volume is filled using a 6-D Hammersley sequence (Fig. 1). The re-

sulting sample points will be closely packed and will cluster around

the reference envelopes.

Additional domains are added to obtain sample point inputs that

place the contact surfaces in an “almost unloaded” condition (contact

boundary points) and in an out-of-contact condition. In this way, we

include domains to capture specific configurations.
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