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a b s t r a c t 

Measurement of contact pressures at the wheelchair-seating interface is a critically important approach 

for laboratory research and clinical application in monitoring risk for pressure ulceration. As yet, mea- 

sures obtained from pressure mapping are static in nature: there is no accounting for changes in pressure 

distribution over time, despite the well-known interaction between time and pressure in risk estimation. 

Here, we introduce the first dynamic analysis for distribution of pressure data, based on the Kaplan–

Meier (KM) Product Limit Estimator (PLE) a ubiquitous tool encountered in clinical trials and survival 

analysis. In this approach, the pressure array-over-time data set is sub-sampled two frames at a time 

(random pairing), and their similarity of pressure distribution is quantified via a correlation coefficient. A 

large number (here: 100) of these frame pairs is then sorted into descending order of correlation value, 

and visualized as a KM curve; we build confidence limits via a bootstrap computed over 10 0 0 replica- 

tions. PLEs and the KM have robust statistical support and extensive development: the opportunities for 

extended application are substantial. We propose that the KM-PLE in particular, and dynamic analysis in 

general, may provide key leverage on future development of seating technology, and valuable new insight 

into extant datasets. 

© 2016 IPEM. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Measuring – and manipulating – contact pressures at the seat- 

ing interface is a critically important paradigm in minimizing risk 

for pressure ulceration in a highly at-risk population [1,2] . Map- 

ping the pressures under the buttocks is a widely-used approach 

in both clinical decision making and laboratory research, and is an 

integral practice in developing technologies and treatment strate- 

gies for mitigating ulcer risk factors [3–8] . Naturally, there is in- 

cumbent need for robust and interpretable descriptors to support 

both scientific inquiry and clinical practice. 

Most commercially available pressure mapping systems yield a 

2-dimensional dataset (a 2-D array of data points corresponding 

to the sensor grid). While there are presently no “gold standard”

measures by which pressure risk is quantified [9,10] , a handful of 

measures are in frequent use, with well-established merits and de- 

merits. While it is beyond the scope of the present work to review 

all such measures, we note that peak pressure, peak pressure in- 
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dex, average pressure, and pressure variance are among those most 

commonly reported. 

Notably, these metrics are all static in nature: they operate on 

the 2-D dataset, and they do not easily avail to reporting changes 

in the nature of the pressure distribution over time. And yet, time 

is universally recognized as a factor in pressure ulcer risk: even 

low pressure loads can be injurious to tissues if maintained for an 

extended time [11] . 

The extant approaches are – at best – a “repeated measures”

style approach utilizing the traditional static measures previously 

mentioned. While others have measured changes in interface pres- 

sure parameters over time or with dynamic activities [12] , these 

studies merely take a static parameter, e.g. peak pressure, and note 

its change across several time points. Integrated measures, e.g. the 

pressure time integral – the area under the curve of peak pres- 

sures over the designated time [12,13] – reflect cumulative effects 

of pressure at the seating interface, and do not yield information 

about pressure dynamics. Furthermore, without normalization, 

integral-based measures are labile to average pressure and time 

of record, and are insensitive to the character of the pressure 

distribution [14] . 

While all of these studies note the potential importance of pres- 

sure redistribution over time or with activity as a potentially key 
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Fig. 1. Many “static” features extracted from pressure maps obscure differences in 

pressure distribution, as might change over time, for example veridical data ob- 

tained empirically from a research subject (Left) and hypothetical data obtained by 

random reassignment of the empirical data (Right); both pressure maps have iden- 

tical average pressure, peak pressure, pressure variance, and peak pressure index. 

factor in risk reduction for pressure ulceration, none are actually 

measuring re-distribution [12,15–18] . 

We illustrate this in a simple example where raw data col- 

lected from a patient can be seen to yield identical parameters 

when scrambled across the pressure array into a random 2-D scat- 

ter ( Fig. 1 , Top). Hypothetically, if the pressure distribution were to 

change over time as depicted, there would be substantial reduc- 

tion of risk for ulceration, given the substantial redistribution of 

pressure across the interface. Naturally, this is an extreme and un- 

realistic example, but it illustrates the principle that even the most 

widely used parameters of interfacial pressure measurement are 

inadequate to assess the effectiveness of pressure re-distribution 

over time. Likewise, the converse is also true: it is tempting to 

conclude that an absolute reduction in these parameters indicates 

substantial reduction in ulcer risk. While it is generally accepted 

that reduction of these parameters might correspond to a reduc- 

tion in risk, if the broader character of the interfacial contact has 

not changed, the risk for ulceration remains high: even more-than- 

moderate pressure parameters can be considered “low risk” if the 

pressures are frequently re-distributed – the greatest risk factor for 

ulceration is sustained pressure in a location [19] . In this way, it is 

more desirable to have a measure of distribution similarity (or dis- 

similarity) over time, than it is to have static descriptors that mea- 

sure parameters of the distribution at a single time point. We pro- 

pose that the simple correlation function would be a suitable in- 

dex of distribution similarity over time, and would provide greater 

value than analysis of changes in the “traditional measures” over 

time ( Fig. 1 , Bottom). 

Pressure redistribution, although not commonly characterized 

in research involving interface pressure, remains a frequent rec- 

ommendation for clinical best practices [20] . Here, we propose a 

measure to succinctly quantify the pressure re-distribution over a 

window of observation, i.e. for when the dataset expands to a third 

dimension (time): product limit estimation (PLE). 

PLE was originally designed as a tool for computing probabil- 

ities of occurrence of an event at a certain point in time; multi- 

plying successive probabilities by any earlier known probability to 

get the final estimate [21] . The most common application of PLE 

is in pursuit of a survival analysis, as might be performed in the 

Fig. 2. Exemplar of Kaplan–Meier survival analysis based on survival data from the 

Mayo clinic trial in primary biliary cirrhosis of the liver. 

study of outcomes of a clinical trial with a mortality end-point; 

the National Center for Biotechnology Information (NCBI) PubMed 

database contains more than 50,0 0 0 references to the Kaplan–

Meier (KM) PLE in all manners of medicine and applied science 

research. The KM is probably the simplest and most widely-used 

method for computing survival over time [22,23] . 

Here, we propose that PLE may provide leverage on a prob- 

lem hitherto unrealized: quantifying the dynamics of the contact 

pressure image recorded at the seating interface over time. In this 

study, we describe the method, and illustrate its use through its 

application to two sample datasets. We discuss foreseeable con- 

straints to interpretation, and opportunities for expansion. 

2. Methods 

2.1. Product-limit formulation 

The Kaplan–Meier PLE is posed as follows: let t n be the time to 

the nth event (typically: death, given as d n ), and let S( t n ) = P (T > 

t n ) be the probability of survival at time T beyond t n . The proba- 

bility at t n + ′ depends conditionally on S ( t n ), so the KM-PLE is built 

recursively: 

S ( t ) = 

j ∏ 

i =1 

(
1 − d i 

n i 

)

where j is the total sample size, and S(t) is the piecewise-constant 

estimator of survival function over time t . For a living participant 

in a clinical trial, the probability of survival is always 0 ≤ S(T > 

t) ≤ 1 . In Fig. 2 , we show an example application of KM analysis 

to a classic survival dataset from the Fleming and Harrington text- 

book, conveying data from the Mayo Clinic trial in primary biliary 

cirrhosis of the liver conducted between 1974 and 1984 [24] . 

Here, we see two survival curves (male versus female), yielding 

an intuitive and interpretable view into the differences in survival 

benefit by sex. Such a plot could also be constructed for survival 

benefit by any categorical variable, e.g. treatment arm or risk 

category. 

2.2. Correlation as event analog 

Here, we seek to characterize the distribution (or, more specif- 

ically: the re-distribution) of pressures across the seating interface 

over time. Where the pressure mat data yields a time-series of 

2-D datasets, a re-distribution would be reported as a non-trivial 

change in values across many cells in the matrix M between time 

points t a and t b . This is quantified in a straight-forward way by 
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