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a b s t r a c t 

The six-chamber cardiovascular system model of Burkhoff and Tyberg has been used in several theoretical 

and experimental studies. However, this cardiovascular system model (and others derived from it) are not 

identifiable from any output set. 

In this work, two such cases of structural non-identifiability are first presented. These cases occur 

when the model output set only contains a single type of information (pressure or volume). 

A specific output set is thus chosen, mixing pressure and volume information and containing only a 

limited number of clinically available measurements. Then, by manipulating the model equations involv- 

ing these outputs, it is demonstrated that the six-chamber cardiovascular system model is structurally 

globally identifiable. 

A further simplification is made, assuming known cardiac valve resistances. Because of the poor prac- 

tical identifiability of these four parameters, this assumption is usual. Under this hypothesis, the six- 

chamber cardiovascular system model is structurally identifiable from an even smaller dataset. 

As a consequence, parameter values computed from limited but well-chosen datasets are theoretically 

unique. This means that the parameter identification procedure can safely be performed on the model 

from such a well-chosen dataset. Thus, the model may be considered suitable for use in diagnosis. 

© 2016 IPEM. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

1.1. Background 

Accurately determining cardiac parameters in the intensive care 

unit is difficult since only indirect data of the patient’s cardio- 

vascular state is available and this state is also rapidly changing. 

Mathematical models of the cardiovascular system (CVS) have been 

developed to provide clinicians with additional information regard- 

ing the overall picture of the cardiac and circulatory state. To be 

clinically relevant, these models have to be patient-specific, which 

means that their parameters have to be identified so that simula- 

tions represent a patient’s individual state. This task is not obvious 

due to the indirect nature of the necessary clinical data. 

The CVS can be modelled using very different approaches, in- 

cluding finite element models [1] , pulse-wave propagation models 

[2] , and lumped-parameter models [3] . The present study focuses 

on one such lumped-parameter model. Lumped-parameter models 
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represent whole sections of the CVS as single elements (chambers 

or resistances, for example). An important advantage of these mod- 

els is that they have few parameters, and thus, these parameters 

can be more readily identified from clinical data. The main draw- 

back of lumped-parameter models is that they cannot be used to 

gain local spatial information on the CVS. 

The CVS model used in this work has been developed by 

Burkhoff and Tyberg [3] . It is a simple lumped-parameter model 

that describes the whole CVS using six state equations and thir- 

teen parameters ( cf . Fig. 1 ). This model is the simplest model to 

consider systemic and pulmonary circulations. This model has al- 

lowed theoretical studies assessing the consequences of left ven- 

tricular dysfunction [3] and ventricular interaction [4] . 

From an experimental point of view, a similar model has been 

used for hemodynamic monitoring during septic shock [5] and pul- 

monary embolism [6,7] . The model parameters, such as systemic 

and pulmonary vascular resistances, ventricular end-systolic elas- 

tances and pulmonary arterial elastance, are needed by clinicians 

to assess the severity of a condition. The model has also recently 

been used to compute total stressed blood volume [8] , an index 

of fluid responsiveness [9] . Furthermore, many other models, more 

complex, can be seen as extensions of this simple model [4,10–13] . 

One of these more complex models has been used to investigate 
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Fig. 1. Schematic representation of the six-chamber CVS model. 

the haemodynamic state of patients after mitral valve replacement 

surgery [14] . 

However, as will be shown further, there are several measure- 

ment sets from which the parameters of this model (and other 

models derived from it) cannot be uniquely computed. The key 

question is: can we find a measurement set which allows to identify 

all model parameters ? In more theoretical terms, this question can 

be stated as: what is the set of model outputs one has to include in 

the model definition for this model to be structurally globally identifi- 

able ? This notion of structural identifiability is defined in the next 

subsection. 

1.2. Structural identifiability 

Structural identifiability analysis of a model determines 

whether all model parameters can be uniquely retrieved in the 

perfect conditions of noise-free and continuous measurements of 

the model outputs. If the answer is yes, then the model is said to 

be structurally globally identifiable [15,16] . Otherwise, if there exists 

multiple parameter values for the given model outputs, the model 

is structurally locally identifiable . Finally, if there is an infinite num- 

ber of possible parameter values, the model is termed structurally 

non-identifiable . 

Structural identifiability is called structural because it only 

depends on the model equations (its structure ). Thus, it de- 

pends on the roles of the parameters and the nature and num- 

ber of the available model outputs. For instance, if the num- 

ber of model outputs is too low, the model is likely to be 

non-identifiable. 

Taking the measurement noise and the practically finite num- 

ber of data points into account and investigating if the model pa- 

rameters still can be uniquely determined relates to a different 

topic, called practical identifiability [17] . The tools used to investi- 

gate practical identifiability are different and include, for instance, 

sensitivity analyses and parameter correlation analyses [8] . Struc- 

tural identifiability is a necessary condition for practical identifi- 

ability. It is therefore risky to perform a parameter identification 

procedure on a model which has not been shown to be structurally 

identifiable. 

1.3. Goal 

This work aims to prove the structural identifiability of the CVS 

model from a clinically available output set. As said above, this 

structural identifiability analysis is a necessary step to ensure that 

results obtained when identifying the model parameters from lim- 

ited clinical data are unique, and thus, relevant. 

2. Methods 

2.1. Six-chamber cardiovascular system model 

The CVS model that is the focus of this work has been previ- 

ously presented by Burkhoff and Tyberg [3] and is shown in Fig. 1 . 

The model comprises six elastic chambers linked by resistive ves- 

sels. These six chambers represent the aorta, the vena cava, the 

pulmonary artery, the pulmonary veins ( i = ao, v c, pa and pu ) and 

the two ventricles ( i = lv and rv ). 
The arterial and venous chambers are modelled as passive 

chambers with a constant linear relationship between pressure P i 
and (stressed) volume V i : 

P ao (t) = E ao · V ao (t) (1) 

P v c (t) = E v c · V v c (t) (2) 

P pa (t) = E pa · V pa (t) (3) 

P pu (t) = E pu · V pu (t) (4) 

where the constant parameters E i are called the elastances of the 

chambers. 

Ventricular chambers are active. Thus, the relationship between 

pressure and volume is time-varying [18] : 

P lv (t) = E lv · e lv (t) · V lv (t) (5) 

P rv (t) = E rv · e rv (t) · V rv (t) . (6) 

In Eqs. (5) and (6) , the constant parameters E lv and E rv are the end- 

systolic elastances and the functions e lv (t) and e rv (t) are called the 

driver functions. These driver functions can take different forms, 

but for the model to correctly mimic the physiological activity of 

the normal heart, e lv (t) and e rv (t) have (at least) to be periodic 

with period T (the cardiac period), range from 0 (diastole) to 1 

(end-systole) and rise and fall at approximately the same time. 

Equally, it has been shown that while this approach still holds 

in disease, there are subtle changes to driver functions based on 

disease sate [19] . Also note that, for simplicity, no end-diastolic 

pressure-volume relationships were inserted in Eqs. (5) and (6) . 

The six chambers are linked by resistive vessels, representing 

the four heart valves (mitral: mt , aortic: a v , tricuspid: tc and pul- 

monary: pv ) and the systemic and pulmonary circulations ( sys and 

pul ). In these last two vessels, flow Q is given by Ohm’s law: 

Q sys (t) = 

P ao (t) − P v c (t) 

R sys 
(7) 
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