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a b s t r a c t

This paper is motivated by the need to accurately and efficiently measure key periosteal and endosteal pa-

rameters of the femur, known to critically influence hip biomechanics following arthroplasty. The proposed

approach uses statistical shape and intensity models (SSIMs) to represent the variability across a wide range

of patients, in terms of femoral shape and bone density. The approach feasibility is demonstrated by using a

training dataset of computer tomography scans from British subjects aged 25–106 years (75 male and 34 fe-

male). For each gender, a thousand new virtual femur geometries were generated using a subset of principal

components required to capture 95% of the variance in both female and male training datasets. Significant

differences were found in basic anatomic parameters between females and males: anteversion, CCD angle, fe-

mur and neck lengths, head offsets and radius, cortical thickness, densities in both Gruen and neck zones. The

measured anteversion for female subjects was found to be twice as high as that for male subjects: 13 ± 6.4°
vs. 6.3 ± 7.8° using the training datasets compared to 12.96 ± 6.68 vs. 5.83 ± 9.2 using the thousand virtual

femurs. No significant differences were found in canal flare indexes. The proposed methodology is a valuable

tool for automatically generating a large specific population of femurs, targeting specific patients, supporting

implant design and femoral reconstructive surgery.

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Inter-subject anatomic variability is an important consideration

in hip arthroplasty and in the design of implants. The development

of computational platforms to automatically assess key anatomic pa-

rameters and bone quality measures can serve as pre-operative plan-

ning tools with the potential to identify risks and guide implant se-

lection and placement for optimal patient outcomes. Image-based

modelling, along with statistical shape analysis, can facilitate the de-

velopment of such tools for improving our understanding of the hu-

man anatomy and capturing the variability across the population.

High-fidelity computer models that represent the femur and knee

joint geometries for example can now be generated, ready for sim-

ulation and for the interrogation of designs and scenarios that would

be impossible or infeasible in live patients or in laboratory test-

ing. As a result, given a set of training images of variable resolution
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for the human body, the main goal is to model the geometric vari-

ability of the anatomic structures. The detail available in specimen-

specific models can then be harnessed while leveraging the power

of the parameterisation techniques common in generic models

[7–9,11,13,15,20,22,28,31,35].

The measurement of image-based anatomy parameters is often a

manual process [19] and can be labour intensive and time consum-

ing. The reliability and accuracy of parameter measurements depend

on the experience of users, their knowledge of the studied anatomy

but also on the available software. Important parameters such as the

hip offset, typically derived from 2D X-rays (frontal plane) or the

anteversion (characterising the anatomy in the transverse plane of

the hip) are not only known to critically influence the hip mechan-

ics but their influence is not well understood [16]. Failure to ade-

quately consider the full 3D anatomy and its variation across gen-

der and age may not only limit the patient’s function but can also

compromise the long-term success of the surgery [18,41]. Whilst to-

mographic imaging modalities such as CT and MRI provide an oppor-

tunity to assess the anatomy three-dimensionally, there is no consen-

sus on which specific reference axes and coordinate systems are best

suited to accurately and reliably determine 3D measures of femoral
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Table 1

Meshing parameters.

Meshing parameters Value

Target minimum edge length (mm) 0.8

Target maximum error (mm) 0.5

Maximum edge length (mm) 10

Surface change rate (1 = slow, 100 = fast) 8

Target number of elements across a layer 30

Element internal change rate (1 = slow, 100 = fast) 30

Mesh quality optimisation cycles 5

In-out target ratio 0.1

Tetrahedron volume skew 0.9

Tetrahedron minimum dihedral angle (°) 10

Jacobian 0.1

anatomy [16,19]. A pre-operative estimate of the version still depends

on the accuracy of these axes either using CT scan images [38], stan-

dard radiographs, CAD or finite element (FE) mesh-based measure-

ments. Therefore, as a critical first step towards understanding the

role of 3D femoral anatomy for hip mechanics, a comprehensive mea-

surement of shape and density-based parameters must be conducted.

The present study focuses on the development of a novel com-

putational tool that enables to fully represent the possible variations

in bone shape and density for patients using a statistical shape and

intensity model (SSIM), based on a library of patient CT scans. Key

anatomic parameters are accurately and automatically measured and

results between females and males are compared. The rationale be-

hind this was to represent the variability in anatomic parameters

across gender and reveal any significant differences in both shape

and density. The ultimate goal is to define a strategy that can help

to better classify types of femoral canal shape using a wide range of

patients and bone quality but also to aid in the selection of the most

appropriate hip replacement.

2. Materials and methods

In this study approved by the local ethics committee and executed

in accordance with the respective regulations, CT scan images were

used to generate 75 male (47 left, 28 right) and 34 female (19 left

and 15 right) femurs for analysis (voxel size: 0.488 × 0.488 × 1.5–

0.7422 × 0.7422 × 0.97 mm). Patients were aged 25–106 years

with a mean average age of 64.61 ± 19.69 years, 33 being less

than 60 years old. The average weight, height and body mass index

(BMI) for females (males) was 73.02 ± 11.93 kg (88.06 ± 16.07 kg),

1611 ± 65.83 mm (1773.5 ± 98.29 mm) and 28.19 ± 4.78 kg m2

(27.89 ± 3.92 kg m2), respectively.

2.1. Femur model generation

A total of 109 femur models were segmented using ScanIP soft-

ware ([36], UK). CT image thresholds were interactively defined to

select the desired tissue and identify trabecular and cortical bone.

A “floodfill” capability was used to remove non-connected artefacts;

blood vessels, cartilage and any anomalies were removed by using

the “unpainting” option available within the software. Any detected

gaps were manually reconnected before filling the cavities and gen-

erating femur masks (Fig. 1a). The segmented femurs were converted

into high-quality 3D tetrahedral finite element (FE) meshes in Sca-

nIP which provides detailed control over the number of elements

and further indicators of mesh quality mesh density transition speed

(Table 1). For each mesh, the bone apparent density (ρ) was auto-

matically assigned, assuming a linear relation to the Hounsfield unit

from the CT scan; no calibration phantom was available for the CT

images. For the calibration between bone elastic modulus E and ρ ,

the relationship E = 6850ρ1.49 was used [24], based on the combined

numerical–experimental study by Schileo et al. [33] on the effects

of density–elasticity relationship on strain levels in long bones. El-

ements within the medullary canal had a density of 0 g/cm3 while a

peak value of 1.73 g/cm3 was assigned to the densest cortical bone of

the femoral shaft.

2.2. Mesh registration and morphing

The FE meshes resulting from segmented femurs were used to

form a dataset of training samples. First, each femur shape was de-

scribed by a dense cloud of points located on the external surface

and an element connectivity matrix. Next, a source mesh of a seg-

mented left femur (25580 nodes, 51156 triangles) from the visible

human dataset [37] was used for elastic surface registration of each

considered target male and female subjects. The voxel size from the

visible human dataset is 0.9375 × 0.9375 × 1 mm. The rationale be-

hind the choice of this model was to use a medium size femur model

that guarantees a minimum mesh distortion when elements are ei-

ther stretched or distorted [9]. All models were initially aligned to a

unique orientation with the same centre of mass using the iterative

closest point (ICP) algorithm [6]. This allowed eliminating the effects

of variability in patient positioning during scanning procedures.

The registration scheme initially proposed by Moshfeghi et al. [25]

and modified by Bryan et al. [9] uses the k-d trees (Samet [34]) to find

the nearest neighbour and iteratively applies a Laplacian smoothing

technique (Vollmer et al. [40]) to minimise mesh distortion. Note that

for the right femurs considered in this study (28 males and 15 fe-

males), the models were mirrored through the mid-sagittal plane to

make them “virtually left.” This was followed by applying a volume

mesh morphing strategy [2,9] to achieve a 3D correspondence be-

tween the source and target femur models. This allowed each target

femur mesh to be matched to the source mesh and to convert it into a

3D solid 4-noded tetrahedral mesh (304,638 elements, 65,031 nodes).

Finally, the CT-based nodal material properties were directly mapped

from each target femur model to each morphed mesh using a near-

est point 3D interpolation. Then, for each finite element, the material

properties were averaged over its 4 nodes (Bah et al. [3]).

2.3. Principal component analysis (PCA)-based statistical shape

intensity model (SSIM)

A training dataset of femur nodal coordinates and Young moduli

was first assembled into a matrix TD that can be written as follow:

TD = [X1, X2, . . . , XN]
T ∈ R

Nx4n, (1)

where Xi is a single vector of length 4n that defines the ith femur and

contains both the nodal coordinates (x, y, z) and elastic Young moduli

E;

Xi = {xi,1, xi,2, . . . , xi,n, yi,1, yi,2, . . . , yi,n,

zi,1, zi,2, . . . , zi,n, Ei,1, Ei,2, . . . , Ei,n}T
, (2)

n is the total number of nodes in each femur mesh and N is the to-

tal number of femur models. TD was first modified into a standard-

ised training dataset TD′. This was achieved by removing the average

femur denoted X̄ from each femur candidate Xi and dividing by the

standard deviation along each column of TD. A PCA-eigenanalysis of

the resulting covariance matrix was then performed that projects it to

the first few eigenvectors, the eigenvalues highlighting the directions

of the highest variances. This led to the selection of the first princi-

pal components that account for 95% of the total cumulative variance,

i.e. those that best decomposed the training dataset in terms of shape

and bone density [9,15,26].

Using this approach, it is possible to approximate each new femur

model as follows:

X = X̄ +
∑m

i=1
ci�

i, (3)
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