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a b s t r a c t 

The relationship between sleep apnoea–hypopnoea syndrome (SAHS) severity and the regularity of noctur- 

nal oxygen saturation (SaO 2 ) recordings was analysed. Three different methods were proposed to quantify 

regularity: approximate entropy (AEn), sample entropy (SEn) and kernel entropy (KEn). A total of 240 sub- 

jects suspected of suffering from SAHS took part in the study. They were randomly divided into a training 

set (96 subjects) and a test set (144 subjects) for the adjustment and assessment of the proposed methods, 

respectively. According to the measurements provided by AEn, SEn and KEn, higher irregularity of oximetry 

signals is associated with SAHS-positive patients. Receiver operating characteristic (ROC) and Pearson corre- 

lation analyses showed that KEn was the most reliable predictor of SAHS. It provided an area under the ROC 

curve of 0.91 in two-class classification of subjects as SAHS-negative or SAHS-positive. Moreover, KEn mea- 

surements from oximetry data exhibited a linear dependence on the apnoea–hypopnoea index, as shown 

by a correlation coefficient of 0.87. Therefore, these measurements could be used for the development of 

simplified diagnostic techniques in order to reduce the demand for polysomnographies. Furthermore, KEn 

represents a convincing alternative to AEn and SEn for the diagnostic analysis of noisy biomedical signals. 

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Regularity is defined as the consistency of subpattern recurrence 

in a time series [1] . It has shown to be a useful property of biomedical 

signals to discriminate those either generated by pathological sys- 

tems or by the same system under different conditions [2] . Regular 

signals are characterised by a predictable behaviour, with recogniz- 

able patterns that repeat. Regularity is associated with the amount 

of information in a series, which, in a probabilistic sense, is a mea- 

sure of the unexpectedness in the data [3] . Shannon [4] proposed the 

concept of entropy to evaluate the information (or uncertainty) in a 

message, which is modelled as a finite collection of random variables. 

In the context of infinite sequences or series, the entropy rate has 

been employed for the quantification of the amount of information 

[2] . Several metrics have been proposed to estimate the entropy rate 

of a series, with approximate entropy (AEn) [5] and sample entropy 
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(SEn) [6] being the most common ones. A generalised entropy mea- 

sure is given by the family of Renyi entropies ( R q ), where q denotes 

the entropy order [7] . Lake [8] analysed the incorporation of the Renyi 

entropy into the entropy rate framework, showing that AEn and SEn 

approximate the differential Renyi entropy rate for q = 1 and q = 2 , 

respectively. 

AEn and SEn are based on the computation of probabilities by 

counting matches between signal subsequences of length m and 

m + 1 . A match is found when the distance between two subse- 

quences is lower or equal than a tolerance parameter r [6] . A different 

procedure to obtain the Renyi entropy rate of a series consists of sub- 

stituting probability terms in AEn and SEn algorithms by the corre- 

sponding probability density functions [3,8] . Several advantages are 

found in this approach. It suppresses the need of predefined rules for 

the choice of the tolerance parameter r , which can be freely varied in 

order to obtain confident estimates of the density functions. In addi- 

tion, entropy estimates made with different values of r measure the 

same inherent quantity and can be compared directly [8,9] . 

This approach requires the approximation of the (unknown) prob- 

ability density function of the data, for which a finite set of sam- 

ples extracted from the underlying series is initially available. Non- 

parameteric kernel density estimation based on the Parzen window 
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method has been suggested for this purpose [3,8] . Specifically, Gaus- 

sian kernels are of special interest since they result in a smooth and 

continuous profile of the approximated density [10] . Additionally, in 

the case of the quadratic entropy ( R 2 ), i.e., the Renyi entropy of order 

q = 2 , Gaussian kernels lead to the exact evaluation of the integral 

found in its definition [3] . In a preceding study, a kernel-based es- 

timation of R 2 was adopted to assess the quadratic entropy rate of 

a time series [11] . The resulting measure, termed as kernel entropy 

(KEn), was proposed as an indicator of the irregularity of the series 

[11,12] . 

Entropy analysis has yield successful results in several applica- 

tions involving time series processing such as earthquake forecasting 

[13] , exchange rating [14] or fault detection [15] . Furthermore, en- 

tropy measures of biomedical signals have been widely used to assess 

physiological differences between subjects [16,17] . The present study 

focuses on this scenario. We explored the utility of entropy rate mea- 

surements of nocturnal oxygen saturation signals (SaO 2 ) in the con- 

text of sleep apnoea–hypopnoea syndrome (SAHS) diagnosis. Nowa- 

days, a definitive diagnosis about SAHS is obtained from in-hospital 

evaluation of the patient’s sleep through nocturnal polysomnography 

(PSG). This test enables the assessment of SAHS severity by means of 

the apnoea–hypopnoea index (AHI), which quantifies the number of 

apnoea and hypopnoea events per hour of sleep. To obtain the AHI of 

a patient, the sleep specialist must evaluate a large amount of clinical 

and physiological data that, in addition to SaO 2 series, include other 

signals such as the electrocardiogram (ECG), the electroencephalo- 

gram (EEG) or the respiratory airflow (AF) [18] . Therefore, PSG is a 

highly complex and time-consuming procedure. 

Reliable indicators of SAHS severity automatically extracted from 

these data would enable an objective and simplified interpretation. 

Nocturnal oximetry recordings are of special interest as they reflect 

respiratory dynamics during sleep. Apnoeas and hypopnoeas are usu- 

ally accompanied by hypoxaemia due to airflow reduction, which is 

reflected by a marked drop in the saturation value [19] . The diagnos- 

tic utility of oximetry signals has been previously evaluated through 

different methods. A straightforward approach is the use of oxime- 

try parameters based on the computation of desaturation events or 

the time spent below a certain level of saturation [20,21] . In addi- 

tion, complex signal processing and pattern recognition techniques 

like neural networks or genetic algorithms have been employed for 

the extraction of useful descriptors from SaO 2 data [22–24] . Accord- 

ing to the reported results, a higher diagnostic accuracy can be ob- 

tained through the combination of different f eatures including statis- 

tical, spectral and non-linear ones. Correct diagnostic rates close to 

90% have been reported for screening algorithms based on this ap- 

proach [22,25,26] . 

Among other features, SaO 2 irregularity measured by the entropy 

rate has been employed as a descriptor of the influence of SAHS sever- 

ity on its dynamic behaviour [25,27] . The non-deterministic occur- 

rence of apnoeic episodes tends to increase the uncertainty in the 

SaO 2 signal and, equivalently, its amount of information. As a re- 

sult, signals from subjects suffering from SAHS are expected to have a 

higher entropy rate than those from control subjects. Previously, AEn 

has been employed to measure SaO 2 irregularity [27,28] . These pre- 

ceding studies showed the relationship between higher irregularity 

of oximetry signals and SAHS severity, estimating that a correct diag- 

nosis based on regularity analysis can be obtained for approximately 

85% of the patients. However, AEn has proven to be a biased entropy 

estimator [6] and, thus, further analysis is required to extract robust 

conclusions on the relationship between SAHS severity and SaO 2 ir- 

regularity. 

To this end, the present study proposes a comparative analysis be- 

tween different entropy metrics. In addition to AEn, we suggest en- 

tropy analysis of SaO 2 series based on SEn and KEn, which provide 

two different approaches to estimate the quadratic entropy rate of 

a signal. The present study aims to determine to which extent the 

irregularity of SaO 2 data is related to SAHS severity, as well as the 

most accurate method to quantify this relationship. 

We hypothesise that a more confident assessment of the entropy 

of SaO 2 recordings can be obtained by means of kernel-based approx- 

imations to probability density functions as implemented by KEn. 

This method represents a novel approach for entropy estimation with 

respect to conventional procedures like AEn and SEn. The framework 

implemented by KEn suitably adapts to oximetry analysis since SaO 2 

samples can be interpreted as observations of a continuous variable. 

Thus, probability density functions may provide a more reliable de- 

scription of their statistical behaviour. This hypothesis is evaluated 

through an exhaustive regularity analysis of SaO 2 data using AEn, SEn 

and KEn. 

2. Materials and methods 

2.1. Subjects and signals 

A total of 240 subjects suspected of suffering from SAHS took part 

in the study. They underwent PSG in the Sleep Unit of Hospital Uni- 

versitario Pío del Río Hortega, Valladolid, Spain. The Review Board 

on Human Studies approved the protocol and each subject gave their 

consent to participate in the study. To draw useful conclusions on the 

effect of SAHS on SaO 2 dynamics, subjects affected by any other rel- 

evant respiratory disorder were excluded. The selected patients were 

continuously monitored using a polysomnograph (Alice 5, Respiron- 

ics, Philips Healthcare, The Netherlands). A medical expert analysed 

the PSG recordings according to the rules proposed by Rechtschaffen 

and Kales [29] . Once apnoeas and hypopnoeas were identified, the 

AHI was obtained as the total number of events (i.e., the sum of ap- 

noeas and hypopnoeas) divided by the total sleep time. The resulting 

value is expressed as the number of events per hour of sleep [30] . A 

threshold given by AHI = 10 h 

−1 was used to determine a positive 

diagnosis of SAHS [31] . 

A Nonin PureSAT pulse oximeter (Nonin Medical Inc., USA) was 

used to record oximetry signals at a sampling frequency of 1 Hz. 

These signals were subsequently saved to separate files to be pro- 

cessed offline. A preprocessing stage was initially applied to remove 

artefacts like marked drops or zero samples due to a bad contact of 

the probe during sleep. The criteria suggested by Magalang et al. [32] 

were taken into account to perform signal preprocessing. According 

to these criteria, all changes greater than 4%/s between consecutive 

sampling intervals and any sample lower than 20% were removed. 

Fig. 1 shows two oximetry recordings from our dataset once arte- 

facts were removed. The signals correspond to a normal subject 

(AHI = 0.5 h 

−1 ) and a subject with severe SAHS (AHI = 32.1 h 

−1 ), 

respectively. In addition, a detailed view (12 min) of both record- 

ings is provided ( Fig. 1 c,d). The differences between these signals 

reflect the influence of repeated apnoeas and hypopnoeas on SaO 2 

dynamics. The signal from the normal subject is characterised by a 

near-constant saturation value along the night, with small fluctua- 

tions around the baseline level. This behaviour is confirmed when ob- 

served in detail, as it exhibits some variability without marked desat- 

uration events. In contrast, the profile of the signal from the subject 

with severe SAHS reflects a significant instability as a consequence of 

repeated desaturations accompanying apnoeas and hypopnoeas. As 

is evident from the signals shown in Fig. 1 (c, d) these desaturation 

events are more frequent when compared with the oximetry record- 

ing from the normal subject. Additionally, they are more pronounced 

and longer. Therefore, a distinct value of the entropy rate can be ex- 

pected for these signals since they reflect different dynamics. 

The hold-out method was used to prevent bias in the estimation 

of the performance of the three entropy metrics [10] . Therefore, the 

initial population was randomly divided into a training set with 96 

subjects (40%) and a test set with 144 subjects (60%). The former 

was used to adjust user-dependent parameters in AEn, SEn and KEn 
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