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a b s t r a c t

We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-

channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based

intensity images. The general idea is to combine the suitability of certain wavelet decomposition

bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-

negative matrix factorization (NMF) for extracting patterns from images. In order to overcome conver-

gence problems which often arise in NMF-related applications, we design a novel robust initialization

strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. More-

over, the method can be readily used because no a priori knowledge or parameter adjustment is needed.

The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsuper-

vised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms

of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized av-

erage rectified value, suggest that the proposed method enables better ECG–EMG separation quality than

the reference methods.

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Analysis of surface electromyography signals (EMG) is a key is-

sue in a number of biomedical signal processing applications e.g.

muscle onset/offset detection, conduction velocity estimation, fa-

tigue analysis, to name a few. Often, the presence of electrocardio-

gram (ECG) disturbances gives rise to distortions in EMG signals,

jeopardizing the accuracy of the analysis and possibly leading to

misjudgments. Removal of the heart muscle electrical activity from

a single-channel surface electromyogram recording remains a chal-

lenging task, because the ECG and clean (undistorted) EMG simul-

taneously overlap in both the time and frequency domain.

Related work encompasses a number of approaches, where

the problem of ECG suppression from surface EMG recordings is

treated as a source separation from a linear signal mixture [1,2].

The most straightforward approaches include filtering [3–5], gat-

ing and subtraction [6,7]. These methods lack efficiency, due to

a simplistic approach to the issue of time-frequency signal over-

lap. More sophisticated methods include singular spectrum anal-

ysis (SSA) [8] and various noise cancelling algorithms based on

the theory of adaptive filtering [9–12]. They can achieve a good
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separation quality at the expense of making use of external refer-

ence signals and supplementary electrodes. Methods like in [13]

exploit statistical properties of the signals in a mixture to per-

form independent component analysis (ICA) for multiple-recording

EMG signal denoising. The use of wavelets in ECG signal process-

ing applications e.g. QRS detection, compression, denoising [14–16]

has inspired a number of wavelet-based EMG–ECG separation ap-

proaches, where the temporal features of an electrocardiogram are

captured in the multiresolution time-scale domain. Such an anal-

ysis is typically carried out by performing the Discrete Wavelet

Transform (DWT) of the input signal plus thresholding, followed by

adaptive filtering [17,18], independent component analysis [19,20],

matching pursuit [21], and pitch-synchronous extraction [22]. Let

us also mention an approach [23] which makes use of explicit

quasi-harmonic time-variant modeling of ECG signals in surface

EMG recordings. Recently, an attempt was made towards applying

non-negative matrix factorization for an ECG–EMG separation ap-

plication, with promising preliminary results [24].

Non-negative Matrix Factorization (NMF), a popular unsuper-

vised learning algorithm for dimensionality reduction, has at-

tracted a lot of attention in the scientific community due to its

straightforward interpretability for a number of applications e.g.

image deblurring [25], audio source separation [26], electroen-

cephalogram classification [27], and multichannel EMG recognition

[28]. Starting from an initial guess, NMF decomposes iteratively
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the intensity representation (e.g. spectrogram) of an input signal

mixture into a sum of non-negative components with time-varying

gain. Once a minimum of a cost function is reached, the separated

components typically exhibit an additive low-rank approximation

of the input data. Moreover, if the constituent signals in the input

mixture are sparse in the time-frequency (TF) domain, the sepa-

rated components may naturally correspond to organic properties

of the data [26].

In spite of increasing popularity in the biomedical signal pro-

cessing community, NMF enclose some serious drawbacks which

often make impossible the straightforward use of available “off-

shelf” algorithms. It turns out that the spectrogram is very sen-

sitive to the choice of analysis parameters: the window size

and overlap between contiguous analysis frames. This means that

rather small value changes in those parameters can give rise to

important variations in the TF decomposition of the input signal.

Another problem that needs to be tackled when working with

spectrograms is the back-conversion to the time domain. A vast

majority of applications requires time-domain waveforms in order

to properly characterize the corresponding signals. Since NMF op-

erates on spectrograms, the phase information, which is crucial for

recovering time-domain waveforms, is not available.

Another drawback is that sparseness can guarantee the conver-

gence only to a local minimum of the cost function; accordingly,

the outcome might not be an interpretable representation of the

input data. In order to ensure convergence to a global minimum, a

proper initialization of an NMF algorithm is crucial. Typically, ini-

tialization is performed through matrices containing random non-

negative entries. Such an initialization is very general and easy to

implement, because it does not assume any kind of a priori infor-

mation about the input signal. However, it often leads to conver-

gence to a local minimum and accordingly result in unsatisfactory

source separation. In the literature there are only a few attempts

at non-random initialization that aim at reaching smaller overall

error at convergence e.g. the methods based on PCA, fuzzy cluster-

ing, wavelets [29,30].

In the current work we present two novelties which can suc-

cessfully circumvent the aforementioned drawbacks: 1) we de-

sign a robust initialization algorithm to NMF in order to ensure

convergence to the global minimum of the cost function, 2) we

carry out low-rank matrix decomposition over wavelet-based in-

tensity patterns, which ensures a correct reconstruction of the

time-waveforms by means of the inverse transform. Wavelets are

shown to be an adequate tool for generating local scale-dependent

descriptions of individual features in the electrocardiogram [31].

Such descriptions are typically supported by a small number of

relevant transform coefficients, which in turn provide sparse time-

frequency (TF) intensity representations. In addition, we generate

an intelligent initial guess for an NMF iterative algorithm by incor-

porating some a priori knowledge about the components present

in the input electromyogram. By the combined action of low and

high-pass filtering of the input surface electromyogram we obtain

rough ECG–EMG estimates, which are then used to establish the

starting point for the iterative procedure. Although very coarse, it

can be shown that these estimates yield a significant reduction in

the initial cost function values and lead to global minimum conver-

gence most of the time. An additional benefit of such an approach

to NMF initialization is that no explicit QRS complex time localiza-

tion estimation is needed [20].

2. Method

We describe in the present section a novel strategy that couples

the wavelet theory to NMF initialization and matrix decomposition.

This particular approach to EMG denoising is designed in such a

way to mitigate the drawback of the “off -shelf” NMF algorithms,

as explained in the previous section. We will first briefly review

the wavelet function basis we chose as the basis for non-negative

signal representation. Then, we will describe the way to generate

the initial NMF matrices which reflect the natural ECG–EMG sig-

nal structure. It will be shown in Section 3 that such an approach

to NMF initialization ensures a very good ECG–EMG separation

quality.

2.1. Non-dyadic wavelet analysis

In the context of the present application, the choice of wavelet

basis was determined by the following constraints. On the one

hand, we need non-dyadic wavelet analysis which would provide

a non-uniform frequency resolution in the band up to 500 Hz ap-

proximately. This is connected to the fact that most of the ECG–

EMG energy overlap is clustered at low frequencies (up to 50 Hz)

where more resolution is needed to obtain a clear picture. Towards

higher frequencies the spectrum of the input signal is dominated

by the EMG, which means that low resolution would be sufficient.

On the other hand, we need wavelets that are easy to implement

and provide fast and efficient direct and inverse transform calcu-

lation, in order not to slow down the overall ECG–EMG separation

process.

Among a plethora of available wavelet bases, probably the most

adequate for the problem at hand are so called complex-valued

wavelets [32]. Such wavelets, defined either in the time or fre-

quency domain, are known to have good temporal localization

properties and at the same time, they can provide a variable user-

defined frequency resolution. Unlike the classical dyadic wavelet

analysis where the frequency bands are progressively halved from

high towards low frequencies, the complex-valued wavelets can

be defined more flexibly through a set of frequency responses of

a bank of band-pass filters. Examples of such wavelets are fre-

quency B-spline wavelets [33] and Cauchy-type non-linearly scaled

wavelets [20]. Both wavelet classes are characterized by a flexible

design of the filter bank by means of orthogonal adjustment of the

bandwidth and central frequency.

We had no preference when choosing a specific wavelet ba-

sis, given that both are well suited for the problem at hand. Our

choice has fallen on the Cauchy-type non-linearly scaled wavelets,

because they have recently been used in combination with the Fas-

tICA algorithm for ECG–EMG separation. Those wavelets are char-

acterized by a set of P = 18 band-pass filters of the following fre-

quency response Bk(F):

Bk(F ) = F m
k e(−Fk+1)m, k = 1 . . . P (1)

Fk = f

f (k)
c

, (2)

f (k)
c = 1

m
(1.45 + k)

1.959
, (3)

where the parameter m represents a scaling factor typically equal

to 0.7. The graphical representation of the filter bank is shown in

Fig. 1. According to Von Tscharner et al. [20], the frequency re-

sponses (1) are inverse-transformed by the Inverse Fast Fourier

Transform and the corresponding filter impulse responses are ob-

tained. Next, these complex waveforms of length N samples are ar-

ranged in a 36×N matrix B.

Let s be an N-point vector containing a single-channel record-

ing of a surface electromyogram. Then, we will refer to v as the

wavelet transform of s i.e. v = B ∗ s, where the symbol ‘∗’ stands

for row-wise convolution. The corresponding intensity image is ob-

tained by squaring all entries in v and adding the first 18 rows to

the last 18 rows. We will call the resulting 18 × N matrix V, which

is the basis for the proposed WNMF algorithm.
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