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A B S T R A C T

This paper addresses dose finding in clinical trials where individuals exhibit biologic characteristics that
alter the toxicity risks of the individuals. In these situations, instead of determining a dose that works for
every patient, the trial aims to identify a dosing algorithm that prescribes dose according to the patient’s
biomarker or pharmacokinetic expression. Specifically, we aim to dose patients around a pre-specified level
of area under the curve of irinotecan concentration using the patients’ baseline phenotypes that predict
drug clearance. We propose least squares recursion procedures to estimate the dosing algorithm sequen-
tially with an aim to treat patients in the trial around the true unknown dosing algorithm, and introduce a
novel application of an eigenvalue theory that guarantees convergence to the true dosing algorithms. Our
simulation study demonstrates that using an eigenvalue constraint improves the efficiency of the recursion
by as large as 40%, while concentrating in-trial patient allocation around the true dosing algorithm. We also
provide practical guidance on design calibration, and design future irinotecan studies based on data from
our first trial.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Phase I trials of a novel anticancer drug aim to determine a dose
for further investigation in subsequent clinical studies. This dose
is traditionally defined with respect to clinical toxicity. However,
with the recent advances and increasing use of molecular targeted
agents, it is often more relevant to use pharmacokinetic or biomarker
expression as the basis of dose finding. Specifically, we are moti-
vated by the use of irinotecan in patients with metastatic colorectal
cancer [17]. Due to its metabolic mechanism, the expression and
function of irinotecan is affected by numerous environmental and
genetic factors, thus resulting in large variability in its pharmacoki-
netic property [12]. As a result, the conventional one-size-fits-all
approach that prescribes a dose for all patients may not be appro-
priate and may result in overdosing, for instance, if a subject has
low drug clearance. The basic idea of individualized dosing in early
phase trials is to identify a dosing algorithm, as opposed to a sin-
gle dose, based on an individual’s baseline characteristics that are
believed to alter susceptibility to the drug. For irinotecan, individu-
alized dosing is made possible by the prediction of drug clearance
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using patient’s phenotypes including c-glutamyltransferase, mida-
zolam activity, and height [14]. The rationale is that patients with
higher predicted irinotecan clearance can tolerate and should receive
higher dose, so as to reach a target plasma concentration. [17]
consider individualized treatment of irinotecan based on a novel
clearance prediction equation, and aim at a dose with expected area
under the curve (AUC) of irinotecan at 22.157 lg × h/mL.

While the traditional dose finding studies utilize binary clinical
toxicity as outcome, a large number of dose finding methodology
for non-binary outcomes have been proposed in the literature to
address a great variety of clinical situations, including the consider-
ation of efficacy-toxicity tradeoff [3,15,21], the use of time-to-event
outcomes [7], and the incorporation of pharmacokinetic parame-
ters in predicting toxicity [13]. Several approaches have been pro-
posed to target at the expected value of a continuous outcome as
in the irinotecan study; see [1] and [8] for example. Furthermore,
risk-specific dosing has been considered: [2] model toxicity as a con-
tinuous outcome within each risk group; [9] use bivariate isotonic
regression to include risk and dose as covariates; [16] consider a
Bayesian model for bivariate binary outcomes that uses probit mod-
els to depict the marginal dose-covariate-response relationships.
Most of these risk-specific dosing methods, however, are not directly
applicable to the irinotecan study where the covariate is continu-
ous. Also, importantly, while the above-mentioned proposals vary in
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model assumptions and decision rules, they attempt to treat patients
near the target dose. This type of approach, while ethically appealing,
lacks theoretical justification. In case of a homogeneous popula-
tion, [5] shows that applying the continual reassessment method
with a multiparameter model may yield a dose sequence converging
to a dose bounded away from the true target dose even if the model
assumption is correct. The fundamental reason for this phenomenon
is that the dose sequence depends on patient outcomes and is ran-
dom. As such, there is no intrinsic mechanism to ensure that the
design matrix will satisfy the conditions for desirable estimation
properties. In this article, we propose a constrained least squares
recursion procedure based on an eigenvalue theory that guarantees
consistent estimation of the dosing algorithm.

In Section 2, we describe the irinotecan study data that moti-
vate our model and method, and present the proposed method. In
Section 3, we apply our method to design the next series of dose
finding studies of irinotecan based on the data in [17], and discuss
design calibration. The proposed method is illustrated and exam-
ined by simulation in Section 4. This article ends with a discussion in
Section 5.

2. Methods

2.1. Notation and motivating data

van der Bol et al. [17] administer irinotecan as a single agent in 40
patients, with 20 patients dosed according to a clearance prediction
equation (the “Equation arm”) aiming to achieve a target AUC level of
22.157lg × h/mL in the patients, and the other 20 treated according
to the conventional body surface area (BSA) formula:

x = log(350) + b (1)

where x denotes the logarithm of irinotecan dose and b is the BSA in
logarithm. Patients in the Equation arm were dosed according to

x = t0 + z, (2)

where t0 = log(22.157) and z is the logarithm of the predicted clear-
ance based on baseline phenotypes. This equation was derived based
on a single compartment model stating that y = x− z∗ where y is the
logarithm of irinotecan AUC and z∗ is the true log-clearance of the
patient. However, since z∗ was not observable at baseline, the pre-
dicted value z was used as a proxy. More generally, the aim of this
study was to estimate, for any given z, a patient-specific dose h(z) so
that E(y|x, z) = t0. Under a simple linear model

E( y|x, z) = a + bx + cz, (3)

the true dosing algorithm can be explicitly expressed as h(z) = (t0 −
a − cz)/b, while the Equation arm in [17] assumes the parameter
values in the mean model known, namely a = 0, b = 1, and c = −1.

Fitting the irinotecan study data using least squares led to â =
1.26, b̂ = 0.45, and ĉ = −0.34. A two-sided Wald’s test for the
hypothesis b = 1 gave P = 0.055 suggesting a possible deviation
from the single compartment model, whereas the test for c = −1
gave P = 0.003 indicating z was not a perfect proxy of z∗. Fig. 1 shows
the dosing algorithms based on the least squares fit and the Equation
arm, and suggests that the study subjects tended to receive lower
doses than the least squares fit would otherwise prescribe.

The use of BSA values is particularly common to calculate doses
of chemotherapy and has been well calibrated against other mea-
surements such as weight. In the irinotecan study, the BSA values
were available in all 40 patients, who had a mean of 1.9 m2 and
standard deviation of 0.22 m2. This is comparable to the normative

values [18]. Importantly, the BSA and predicted clearance are signif-
icantly associated; the correlation is 0.51 on their original scale, and
0.53 on log scale. This suggests that the predicted clearance and BSA
are measuring similar attribute of an individual’s metabolism.

2.2. Constrained least squares recursion

Motivated by the lack of fit due to the Equation arm(2), we seek
to estimate the dosing algorithm under model (3) in a sequential
manner in a dose-finding study. A common strategy to improve dose
assignments for the study subjects takes a myopic approach that
sets the next patient at the most recent estimate of h(z). Specifi-
cally, we consider a least squares recursion (LSR) that aims to assign
the (n + 1)st patient with covariate zn+1 according to the least
squares estimate of the dosing algorithm h(z), that is, ĥn(zn+1) =(
t0 − ân − ĉnzn+1

)
/b̂n, where

(
ân, b̂n, ĉn

)
are the least squares esti-

mates of (a,b,c) using observations of the first n subjects. In practice,
with clinical justification, we often set limits on the dose range, that
is, we assign the (n + 1)st patient at

xn+1 = max
[
min

{
ĥn(zn+1), xmax

}
, xmin

]
(4)

according to the LSR, where xmin and xmax delimit the dose range.
This recursion can be viewed as an extension of the maximum like-
lihood recursion [20] with covariate adjustment. While this method
intuitively puts study subjects at the current “best” dose, there is a
lack of theoretical justification. Specifically, since the design points
(xi

′s) are chosen in a data-driven manner, there is no guarantee that
the recursion will lead to consistent estimation of the model param-
eters and the dosing algorithm h(z). To be precise, let Mn denote the
design matrix of the first n study subjects, that is, the ith row of Mn

is (1, xi, zi)T, and let kmin(n) and kmax(n) respectively denote the min-
imum and maximum eigenvalues of MT

nMn. Under the recursion Eq.
(4), the design matrix Mn is stochastic, under which [10] shows that
consistency requires

qn =
logkmax(n)
kmin(n)

→ 0 a.s., as n → ∞. (5)

We shall call qn the eigenvalue ratio of the matrix MT
nMn for

brevity, although it is the ratio of logkmax(n) to kmin(n). The eigen-
value condition (5) implies a weaker condition kmin(n) → ∞ that in
effect requires the design points to spread adequately apart. Since
the myopic LSR does the exact opposite by concentrating dosing
around a target dosing algorithm, it is conceivable that Eq. (5) may
not hold; see Section 4 for an illustration. Thus, we propose applying
LSR in conjunction with an eigenvalue constraint, thus called LSR-
EVC. Precisely, we set the dose for the (n + 1)st patient with baseline
covariate zn+1 at xn+1 = max

[
min

{
h̃n(zn+1), xmax

}
, xmin

]
where

h̃n(zn+1) = arg min
x

∣∣∣x − ĥn(zn+1)
∣∣∣ subject to qn+1(x, zn+1) ≤ rn+1

(6)

and rn+1 is a prespecified sequence of positive real numbers con-
verging to 0. The eigenvalue ratio qn+1(x, zn+1) is defined with
respect to the matrix VT

n+1(x)Vn+1(x) for given x, where Vn+1(x) =(
MT

n , (1, x, zn+1)T
)T

. That is, Vn+1(xn+1) = Mn+1 and qn+1 =
qn+1(xn+1, zn+1). Due to the eigenvalue constraint in Eq. (6), the
sequence generated by LSR-EVC satisfies Eq. (5) by construct thus
guaranteeing the consistency of ĥn(z) for h(z). Therefore, at the end
of a study, we will use ĥn(z) to estimate the dosing algorithm h(z).
During a study, the computation of h̃n(zn+1) can be easily done by a
grid search that starts at ĥn(zn+1) and iterates x away from ĥn(zn+1)
on a fine grid until the constraint is met. Both LSR and LSR-EVC are
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