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a b s t r a c t

Respiration is an important signal in early diagnostics, prediction, and treatment of several diseases. Moreover,

a growing trend toward ambulatory measurements outside laboratory environments encourages developing

indirect measurement methods such as ECG derived respiration (EDR). Recently, decomposition techniques

like principal component analysis (PCA), and its nonlinear version, kernel PCA (KPCA), have been used to derive

a surrogate respiration signal from single-channel ECG. In this paper, we propose an adapted independent

component analysis (AICA) algorithm to obtain EDR signal, and extend the normal linear PCA technique

based on the best principal component (PC) selection (APCA, adapted PCA) to improve its performance

further. We also demonstrate that the usage of smoothing spline resampling and bandpass-filtering improve

the performance of all EDR methods. Compared with other recent EDR methods using correlation coefficient

and magnitude squared coherence, the proposed AICA and APCA yield a statistically significant improvement

with correlations 0.84, 0.82, 0.76 and coherences 0.90, 0.91, 0.85 between reference respiration and AICA,

APCA and KPCA, respectively.

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Respiration rate and volume are important measures in detection

and treatment of many common diseases such as cardiac disorders,

asthma, obstructive pulmonary diseases, and sleep apnea. Outside

controlled laboratory environments, however, the usage of spirome-

ters and respiratory effort belts is faced with challenges such as in-

terfering with the subjects’ natural respiration, limited measurement

capacity, and motion artifacts. Respiration modulates several bioelec-

tric and biomechanical signals such as electrocardiography (ECG) [1],

impedance plethysmography [2] and thorax acceleration [3]. Thus, an

indirect measurement of respiration is very attractive via ambulatory

ECG being cost-effective and easy to measure.

ECG derived respiration (EDR) methods have been studied for

some time already [4–6]. The traditional approach is based on

the interaction of the electrical axis of the heart and mechanical

thorax movements, along with the respiration that manifests as

heart compression, thorax impedance alterations and relative elec-

trode position changes [7]. In addition, the heart rate is varied by

respiration [8,9].
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EDR algorithms are based on measuring respiratory induced

changes in the shape of the QRS-complexes or estimating the RSA

component from heart rate variability [10–12]. Lately, more abstract

methods, including principal component analysis (PCA), have been

applied [13]. In the PCA method, the beat-to-beat morphological

changes in ECG waveform segments are explained by a set of princi-

pal component (PC) signals, some of which are expected to capture

respiratory information. In general, a major drawback of PCA is the

fact that it operates on a linearity assumption. Recently, a kernel PCA

(KPCA) based EDR method that can also take into account nonlin-

earities of the data [14] has been proposed outperforming previous

methods.

We have noticed in our studies with linear PCA methods that

the ordinal of a principal component offering the best surrogate

respiration varies, also demonstrated by the original paper [13].

Thus, the fixed selection of the first PC does not produce optimal

results [15].

We hypothesized that using a criterion to select the most

respiration-like component would improve the performance. In this

paper, we first develop a new independent component analysis (ICA)

based EDR method called adapted ICA (AICA). Then, we describe our

adapted PCA method (APCA), including a component selection algo-

rithm similar to AICA. Finally, we provide an experimental compar-

ison of the proposed methods with a selection of methods from the

literature.
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2. Methods

2.1. Data

Fantasia database, freely available at Physionet [16] including 20

recordings from both young (21–34 years) and old (68–85) healthy

subjects was used. During the measurements, the subjects were in a

supine position, breathing spontaneously, and watching the Disney

movie Fantasia made in 1940. Simultaneously, their respiration was

measured with a belt attached around the thorax and the lead II

ECG was captured (fs = 250 Hz). From each subject, a five-minute

data sequence that contained no perceived movement artifacts in

respiration channel was selected in order to obtain clean reference

respiration signals (selected time indices can be requested from the

corresponding author).

2.2. Preprocessing

For R-peak detection, we used the beat annotations supplied with

the database. The following preprocessing steps were performed prior

to decomposition-based EDR methods: AICA, APCA, and KPCA. First,

Savitzky–Golay filter (polynomial order 3, frame size 7) was applied

to remove the high frequency noise from the ECG with minimal dis-

tortion to morphology [17]. Then, the multivariate data matrix x is

constructed from single-channel ECG by aligning consecutive seg-

ments of m length QRS-complexes xn:

x = [
x1 x2 · · · xn

]
(1)

n refers the ordinal of the R-peak getting values from 1 to the number

of R-peaks in the signal. A fixed 120 ms window that corresponds

to 30 samples (m = 1, .., 30) around R-peak was used. Data were

centered by removing the baseline (mean) separately from every QRS

segment [13].

2.3. Adapted independent component analysis

Independent component analysis (ICA) is a statistical method for

decomposing signal datasets into their subcomponents. Subcompo-

nents are assumed to be non-Gaussian signals and statistically inde-

pendent. A generative model for ICA is

x = As, (2)

where x = [ x1 x2 · · · xn ]T is comprised of observed measurements

and s = [ s1 s2 · · · sn ]T includes the unknown sources, i.e. indepen-

dent components (ICs). The matrix A is m by n size mixing ma-

trix, where n denotes the number of sensors/measurements and m

the length of a measurement. Both A and s are estimated with ICA

algorithm [18].

One of the ICA characteristics is that the numbers of ICs is the

same as that of sensors/measurements. Because of that and the fact

that QRS complexes are highly correlating due to the redundancy in

the data, we first reduced the dimensionality of the original QRS data

matrix x using PCA. In our approach, the size of x was finally 6 by n

matrix, where n refers to number of QRS complexes. Then, the ICs are

calculated using nonlinear ICA algorithm by FastICA toolbox [18].

2.3.1. Component selection

The ICA algorithm produces the ICs in random order. Thus, it is

critical to select the best IC to represent the surrogate respiration

signal. In the current 5 min data, we can assume that the subject’s

respiration frequency has limited variability and a peaked spectrum.

Hence, for each component, we first estimated the power spectrum

using Welch’s method (Hamming 213 samples window (32.8 s), a 216

point FFT, 50% overlapping). Then, the global maximum of the spec-

trum is located and a fixed size (0.08 Hz) window is placed around it.

Next, the spectral energy ratio between the spectrum outside the

window and the spectrum within the window is calculated and

the component that produces the lowest energy ratio is selected as

the EDR.

This algorithm does not require complete stable respiration fre-

quency but allow small variability of respiration frequency. In cases of

more varying respiration and/or longer data, the EDR analysis and the

proposed component selection algorithm can be applied in shorter

segments (see, Section 4, for more info).

2.3.2. Resampling and filtering of independent components

The ICs yield information about the respiration only at sparsely

occurring R-peak sites. Thus, we resampled the IC values to the orig-

inal sampling rate. In order to reduce artifacts caused by irregular

sampling sites, a smoothing spline with an appropriate tolerance pa-

rameter (cubic B-spline with tolerance parameter 0.0025) was used

while resampling the EDR [19]. In addition, we noticed that using a

bandpass filtering (Butterworth order 2, 0.08–0.5 Hz passband) re-

duced the baseline wander and high frequency noise that were often

seen in the raw ICs (Fig. 1). These operations improved the perfor-

mance of AICA; to make the EDR method comparison fair later on, we

adopted these post-processing algorithms for all EDR methods.

2.4. Adapted principal component analysis

The method to obtain EDR using PCA [13] can be briefly described

as follows: the covariance matrix � is computed for input matrix x

(described in Section 2.2):

� = cov(x). (3)

The eigenvectors α = [ α1 α2 · · · αn ] and eigenvalues

λ = [ λ1 λ2 · · · λn ] were computed as a solution to:

�α = λα (4)

PCs arranged in decreasing order of eigenvalue magnitudes were

finally obtained using the observed measurements x:

PC = αx. (5)

The EDR candidates are given by the eigenvectors (Fig. 2) and

the same component selection algorithm as in the AICA method as

described above is applied.

2.5. Reference EDR methods

An experimental comparison was made with the original PCA algo-

rithm that utilizes the first PC, named PCA1 here [13], the traditional

R-peak amplitude method (AMP) [20], and the Kernel PCA method

(KPCA) [14], both of which are briefly described here. In the AMP

method, the differences between R-peaks and S-amplitudes (mini-

mum values 100 ms after the R-peaks) were calculated through the

whole ECG [10,20], and the consecutive values generate the EDR.

In KPCA, the data are first mapped using nonlinear transformation

� with a suitable kernel k into higher dimensional feature space

[21]. Then, the PCA is applied in that new feature space and the first

eigenvector is used to get an EDR. A Gaussian radial basis function

kernel k(x, y) = exp(−‖x−y‖2

2σ 2 ) was used with the suggested rule-of-

thumb parameter proposed in [14]: σ̂ 2 = m ∗ mean(var(x)). The data

matrix x is described above in Section 2.2. Variable m determines the

length of QRS segment.

2.6. Evaluation of performance

The comparison of EDR methods is achieved with a correla-

tion and coherence study between obtained EDR signals and the
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