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a  b  s  t  r  a  c  t

In this  paper  we  implemented  machine  learning  (ML)  and  strap-down  integration  (SDI)  methods  and
analyzed  them  for  their  capability  of  estimating  stride-by-stride  walking  speed.  Walking  speed  was
computed  by  dividing  estimated  stride  length  by stride  time  using  data  from  a  foot  mounted  inertial
measurement  unit.  In SDI methods  stride-by-stride  walking  speed  estimation  was  driven  by  detec-
ting  gait  events  using  a hidden  Markov  model  (HMM)  based  method  (HMM-based  SDI);  alternatively,  a
threshold-based  gait  event  detector  was  investigated  (threshold-based  SDI).  In the  ML  method  a linear
regression  model  was  developed  for  stride  length  estimation.  Whereas  the gait  event  detectors  were
a priori  fixed  without  training,  the regression  model  was  validated  with  leave-one-subject-out  cross-
validation.  A  subject-specific  regression  model  calibration  was  also  implemented  to  personalize  the  ML
method.

Healthy adults  performed  over-ground  walking  trials at natural,  slower-than-natural  and  faster-than-
natural  speeds.  The  ML  method  achieved  a root  mean  square  estimation  error  of 2.0%  and  4.2%,  with  and
without  personalization,  against  2.0% and  3.1%  by  HMM-based  SDI and  threshold-based  SDI.  In spite  that
the results  achieved  by  the  two approaches  were  similar,  the  ML  method,  as  compared  with  SDI meth-
ods,  presented  lower  intra-subject  variability  and  higher  inter-subject  variability,  which  was  reduced  by
personalization.

©  2014  IPEM.  Published  by  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Miniature solid-state inertial sensors are steadily gaining inter-
est because of their low cost, limited power consumption, and
the good user compliance when they are embedded in wear-
able sensor systems or portable devices. Hence, the application
niches of these sensors extend beyond their traditional domains,
e.g., automotive industry and factory automation, to include con-
sumer and medical electronics. Currently, several applications in,
e.g., human motion analysis [1,2], activity monitoring and classifi-
cation [3,4], control of prosthetic devices [5,6] may  benefit from
integrating miniature solid-state inertial sensors within inertial
measurement units (IMUs), with the research focus directed to
developing advanced computational methods for data processing
and information extraction.

One long-term goal of the research is to provide tools for
assessing human subjects while they perform activities of daily
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living in unrestrained conditions. Walking is one of the most com-
mon  human physical activities, with a prominent role in assessing
the functional status of humans. Several methods of gait analy-
sis have been studied and developed for estimating temporal and
spatial gait parameters, such as stride time and length. Together
with the gait parameters, walking speed can be associated with
specific functional impairments and it is widely used to quantify
improvements occurring after therapeutic and rehabilitative treat-
ment [7,8]; moreover, walking speed is also instrumental to provide
personal activity and localization information for applications in
health care and pervasive computing [9,10].

Gait parameters can be estimated using miniature solid-state
inertial sensors (accelerometers and gyros) in combination with a
number of computational methods. As for the temporal parameters
of gait, signal-based analysis and, to a more limited extent, meth-
ods of machine learning (ML) have been considered [11]. Usually,
signal-based methods employ curve tracing to search for features
occurring in sensor signals (e.g., by detection of local extremes or
threshold crossings [12]); ML  methods learn to recognize stable
patterns that may  recur in sensor signals due to the cyclical nature
of gait [13]; as compared with signal-based methods, ML  meth-
ods, such as adaptive logic networks and fuzzy logic, have been
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shown interesting results for their capability of accommodating
the relatively large stride-to-stride variability observed especially
in pathologic gait [5,6].

As for the spatial parameters of gait and walking speed, signal-
based and model-based approaches have been considered [14,15].
Direct signal-based approaches apply strap-down integration (SDI)
to inertial sensor data collected from selected anatomical points,
such as the pelvis [16] and, more often, the foot [17–19] or the
shank [20]. Depending on the configuration of the sensor system
used for data collection, the position of the anatomical point rela-
tive to a ground-based reference frame has been estimated in the
three-dimensional space [18,19] or the kinematic information has
been restricted to the sagittal plane [20,21]. The main shortcoming
of SDI lies in the time integration steps that are needed for pose
estimation, which turn into unavoidable errors that tend to grow
unbounded over time, unless a number of tricks are implemented
[22]. Indirect signal-based approaches use either statistical regres-
sion with off-line parameter calibration [23] or training via artificial
neural network [24–26]; usually, they have been based on data col-
lected from inertial sensors that were placed on either the foot or
close to the body center of mass (BCOM). Model-based approaches
adopt biomechanical models of gait to explain the kinematics of
walking and then to infer the variables of interest from signals that
are measured using inertial sensors close to the BCOM [27–29].

Indirect signal-based and model-based approaches usually need
model calibration procedures that are specific for each tested sub-
ject (personalization), which may  even require additional sensing
[30]. This is due to the limited generalization capabilities of the
statistical model used for parameter estimation and to the effects
of physiological variability on the accuracy of the biomechanical
model. One distinctive advantage of statistical pattern recognition
methods is indeed that rules can be learnt from signal features
that do not require time integration of noisy and drifting signals.
On the other hand, these methods would be critical in terms of
generalization capabilities against inter-subject variability [31].

In this paper ML  and SDI methods were compared for the estima-
tion of normal-walking speed using inertial sensors, with particular
regard to the issue of inter-subject variability. A generic ML  method
can perform poorly in situations when data from a monitored sub-
ject were not available at the time the method was trained. We
outline that the generalization capabilities of ML  methods (namely,
how they deal with the problem of inter-subject variability) is
perhaps the key point to be considered for boosting their use in
human motion data analysis. This is the reason why we  pursued
the approach of leave-one-subject-out (LOSO) cross-validation.

We developed and tested various signal-based approaches,
either direct or indirect, combining ML  and SDI methods for esti-
mating walking speed using foot inertial sensor data. A hidden
Markov model (HMM)  performed gait phase segmentation (loading
response, mid  stance, terminal stance and swing) using measure-
ments of the medio-lateral component of the foot angular velocity.
The SDI method used the HMM  output to drive the computa-
tion of the linear acceleration, which was double-time integrated
for stride length estimation (HMM-based SDI). In alternative to
the HMM-based gait event detector, a standard threshold-based
gait event detector using curve tracing was also tested, yielding
the threshold-based SDI. The ML  method used the HMM  output
and the linear acceleration estimated by the HMM-based SDI to
estimate the stride length via linear regression. In the effort to
improve generalization, the linear regression model was  adapted
by a subject-specific calibration procedure (personalization).

To evaluate the performance of the proposed methods, exper-
imental results based on over-ground walking trials carried at
different speeds by healthy subjects wearing an IMU-instrumented
shoe are presented and discussed.

2. Materials and methods

2.1. Data acquisition and preprocessing

Data acquisition was performed using a device called WIMU
(wearable inertial measurement unit), whose development is cur-
rently undergoing in our lab. The WIMU  device is controlled by a
32-bit ARM Cortex processor (NXP Semiconductors LPC1768) and
is powered using a 1.3 Ah lithium polymer battery. It is embedded
with a bluetooth transceiver for connection to a host computer –
an android smart-phone in the present configuration of the data
acquisition system. An app on the smart-phone runs the graph-
ical user interface for data logging; moreover, the app make a
stopwatch tool available to the experimenter to perform the anno-
tation of selected events during the experimental trials. WIMU
devices integrate four sensing elements: a digital tri-axial gyro
(InvenSense ITG-3200, with measurement range ± 2000◦/s), a dig-
ital tri-axial accelerometer (Bosch BMA180, with measurement
range ± 4 g, where g = 9.81 m/s2 is the gravity acceleration), a dig-
ital tri-axial magnetic sensor (Honeywell HMC5843) and an air
pressure sensor (Bosch BMP085). Angular rates and accelerations
were sampled at 100 Hz and on-board digitally filtered using a But-
terworth second-order low-pass filter (cutoff frequency: 10 Hz);
magnetic and air pressure sensor data were not used in this work.
Acquired inertial sensor data, logged into the ARM memory, were
transmitted to the smart-phone before upload to a notebook for
further processing using MATLAB.

Twenty-three healthy adults agreed to participate in the walk-
ing trials after being informed of the experimental procedures.
Subjects were asked to walk along a 45-m corridor six times using
their preferred shoes, twice for each of three walking speeds:
free-selected (natural), slower-than-natural (slow) and faster-
than-natural (fast) speeds – what slow and fast actually meant was
left to the subjects themselves. A WIMU  was  tightly fixed to the
shoelaces of the right feet at the foot instep, with one of the sensi-
tivity axes approximately orientated in the medio-lateral direction,
although no particular care was  taken as for the WIMU  alignment
to the anatomical body planes. Before each walking experiment
the accelerometer was  calibrated by aligning its axes parallel and
anti-parallel to gravity and the offset and sensitivity were adjusted
accordingly [32]; the gyroscope was calibrated using a bias capture
procedure at a time when the subjects stood still before start-
ing walking: the angular velocity measured during walking was
detrended by subtracting the mean of the gyro output taken over a
rest period of 1 s.

Five waypoints (WPs) were marked along the corridor using
adhesive tape at 0, 5, 35, 40 and 45 m distance from the starting
point (Fig. 1).

Data acquired when subjects walked between the 5-m WP  and
the 40-m WP  were retained for processing (steady-state walking);
data between the 35-m WP  and the 40-m WP were included in an
ancillary dataset, which was used for selecting the feature set used
by linear regression.

During each walking trial the experimenter annotated the
times when the subjects’ instrumented foot crossed the WPs  (WP-
crossing time stamps). One reason behind our choice to use manual
annotation of WP  crossing time stamps was that it would be help-
ful to assess walking activities in settings that are unstructured as
much as possible. In fact, the use of external sensors to provide an
automatic annotation of time stamps is in contrast with scenarios in
which the algorithm can be personalized for the final user without
the need of additional hardware. In previous studies a similar anno-
tation approach was  considered to get information on the number
of steps [15] or on the amount of time needed to walk across a
corridor [26].
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