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a  b  s  t  r  a  c  t

Continuous  assessment  of  CA  is  desirable  in a number  of  clinical  conditions,  where  cerebral  hemodynam-
ics  may  change  within  relatively  short  periods.  In this  work,  we  propose  a novel  method  that  can  improve
temporal  resolution  when  assessing  the  pressure-to-flow  dynamics  in the  presence  of rapid  changes  in
arterial  CO2.  A  time-varying  multivariate  model  is  proposed  to  adaptively  suppress  the instantaneous
effect  of CO2 on  CBFV  by the recursive  least  square  (RLS)  method.  Autoregulation  is  then  quantified  from
the  phase  difference  (PD)  between  arterial  blood  pressure  (ABP)  and  CBFV  by  calculating  the  instanta-
neous  PD  between  the signals  using  the  Hilbert  transform  (HT).  A  Gaussian  filter  is  used prior  to HT
in  order  to  optimize  the  temporal  and  frequency  resolution  and  show  the  rapid  dynamics  of  cerebral
autoregulation.  In 13 healthy  adult  volunteers,  rapid  changes  of arterial  CO2 were  induced  by rebreath-
ing  expired  air,  while  simultaneously  and  continuously  recording  ABP,  CBFV  and  end-tidal  CO2 (ETCO2).
Both  simulation  and  physiological  studies  show  that  the  proposed  method  can  reduce  the  transient  dis-
tortion  of the instantaneous  phase  dynamics  caused  by  the  effect  of  CO2 and  is  faster  than  our  previous
method  in tracking  time-varying  autoregulation.  The  normalized  mean  square  error  (NMSE)  of the  pre-
dicted  CBFV  can  be  reduced  significantly  by 38.7%  and  37.7%  (p < 0.001)  without  and  with  the  Gaussian
filter  applied,  respectively,  when  compared  with  the previous  univariate  model.  These  findings  suggest
that  the  proposed  method  is suitable  to track  rapid dynamics  of  cerebral  autoregulation  despite  the
influence  of confounding  covariates.

©  2014  IPEM.  Published  by  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Patient specific continuous assessment of CA can help in deter-
mining the optimal blood pressure to achieve favorable outcomes
in a number of clinical conditions, where cerebral hemodynam-
ics may  change within relatively short periods. This may  occur
for example in patients in a neurosurgical intensive care unit, for
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example following subarachnoid hemorrhage or head injury,
or during cardiovascular surgery [4,10,35,39]. Univariate linear
models of dynamic CA, such as the moving window based autoreg-
ulation index, transfer function analysis, and linear regression,
using beat-to-beat data of CBFV and ABP (or cerebral perfusion
pressure—CPP) have been proposed to track this vital physiolog-
ical function continuously [6,10,26]. However, the sensitivity and
specificity of these methods might be constrained by a number of
physiological confounding covariates as well as the limitations of
modeling techniques that are applied [6,26,28].

Arterial CO2, usually measured as the partial pressure of
end-tidal CO2 (ETCO2), is known as a powerful cerebral vasodila-
tor that can change blood flow greatly within seconds [33]. In
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addition, hyper- or hypocapnia induced by increased or decreased
ETCO2 can result in significant changes in the effectiveness of
autoregulation [1,3,23], and a number of studies have used mod-
eling to understand the underlying variations in pressure-to-flow
dynamics [2,9,14,17,18,20,21,24,31,34,37].

Panerai et al. showed that a multivariate model with ETCO2 as
an additional input can improve the prediction of CBFV [24]. Peng
et al. [31] also reported that the linearity of the system can be signif-
icantly increased when using a multiple input model, especially in
the frequencies below 0.1 Hz. In a recent study of phase dynamics,
they also found that the low synchronization of phase difference
(PD) between ABP and CBFV can be attributed to CO2, which can be
corrected by a CO2 term derived from a multivariate model [32].
There thus appears to be a growing consensus that a multiple-
input-and-single-output (MISO) system is more suitable to model
the cerebral hemodynamics than a single-input-and-single-output
(SISO) system [14,17,18,32].

In addition to the multivariate characteristics, time-varying
assessments are also of growing interest [8,14,18,25,29,30]. Dineen
et al. proposed a continuous autoregulation index and showed
that the response of dynamic autoregulation to a change of ETCO2
is delayed with respect to the change in CBFV [8]. This finding
agrees with the results reported by Liu et al. using adaptive filter-
ing techniques to track time-varying dynamics of autoregulation in
response to step-wise changes of CO2 [16]. These studies indicate
that the pressure-to-flow dynamics might not be changing at the
same pace as the dilation of arterioles. However, univariate models
were employed by these studies and the tracking speed might be
relatively slow, as the updating rate of the continuous estimate is
either constrained by the relatively long length of the moving win-
dow or the slow forgetting factor for the adaptive filter. We  thus aim
now to elucidate if the reported delay in autoregulatory response
is due to physiological phenomena or reflects the limitations of the
signal processing methods.

Autoregulation can be quantified by many parameters. Instanta-
neous phase dynamics has been reported as a standalone autoreg-
ulatory parameter in a number of recent papers, using Hilbert
transform (HT) and wavelet transform techniques [11,12,15,22,32].
The instantaneous phase estimated by these techniques is intrinsi-
cally a continuous parameter, as it is calculated sample by sample
from the recordings. This approach therefore readily lends itself to
the investigation of the time-varying property of autoregulation.

Previous publications have shown that dynamics of autoregula-
tion can be assessed within a relatively narrow band around 0.1 Hz
[1,3,7,15,16,22]. The choice of bandwidth (and thus the band-pass
filter that needs to be applied to the signals prior to using the
Hilbert transforms [5]) requires a compromise between temporal
and frequency resolution.

In the present study, we thus combine multivariate modeling
and instantaneous signal processing methods to shed further light
on the continuous evolution of CA with improved temporal resolu-
tion in the presence of rapid changes in arterial CO2. The objective
is to provide a method that may  track rapid changes of dynamic CA
despite the influence of confounding covariates.

2. Methods

2.1. Outline

The approach may  be summarized as follows: we model the
cerebral hemodynamics as a multivariate system. The recursive
least square (RLS) method is applied to adaptively remove the
contribution of changes in ETCO2 to CBFV. Gaussian filters with
minimal spread in the time-frequency domain are used prior to
applying the RLS filter to limit fluctuations to the frequency band

where autoregulation is usually considered as most evident. The
instantaneous PD is then estimated from the HT of the filtered
residual CBFV and ABP. In the following section a simulation is
described to validate our method, which was then applied to the
recorded data to show the underlying time-varying pressure-to-
flow dynamics during changes of ETCO2 induced by rebreathing.

2.2. Mathematical methods

Cerebral autoregulation is modeled as a multivariate system
[24], where ABP (p[n]), and ETCO2 (c[n]) are the inputs and CBFV
(v[n]) is the output,

v[n] = vp[n] + vc[n] + e[n]

=
Lpv−1∑

i=0

hpv[i]p[n − i] +
Lcv−1∑
j=0

hcv[i]c[n − j] + e[n],
(1)

and n denotes sample number at 1 Hz sampling rate. e[n] is the
residual CBFV unexplained by the model. vp[n] and vc[n] are parts
of CBFV that can be attributed to ABP and ETCO2, respectively; hpv[i]
and hcv[i] are their respective causal FIR filter impulse responses;
Lpv and Lcv denote the orders of the filters. Based on a compromise
between the known time for a physiological response to occur, the
number of free parameters, and the length of data available, these
orders are chosen to be equal 10 for both filters.

Based on (1), we  extended our previous time-varying univari-
ate model identified by a SISO RLS adaptive filter to a time-varying
multivariate model identified by a MISO RLS adaptive filter. We
rearrange (1) by vectors, where the vector of the filter impulse
responses can be written as:

H [n] =
[

Hpv [n]

Hcv [n]

]
, (2)

Hpv [n] =
[
hpv [0] . . .hpv

[
Lpv − 1

]]t
, (3)

Hcv [n] = [hcv [0] . . .hcv [Lcv − 1]]t . (4)

The inputs can be defined as:

x [n] =
[

xp [n]

xc [n]

]
, (5)

xp [n] =
[
p [n] , p [n − 1] , . . .,  p

[
n − Lpv + 1

]]t
, (6)

xc [n] = [c [n] , c [n − 1] , . . .,  c [n − Lcv + 1]]t . (7)

According to (1), the error can be expressed as:

e [n] = v [n] − H[n]tx [n] . (8)

We can then follow the algorithm of the RLS adaptive filter to
update H[n]. We  first estimate the Kalman gain vector, k[n], as:

k [n] = �−1P [n − 1] x [n]
1 + �−1xt [n] P [n − 1] x [n]

(0 ≤ � ≤ 1) , (9)

where P[n] is the inverse autocorrelation matrix of the input sig-
nals. This is updated by:

P [n] = �−1P [n − 1] − �−1k [n] x[n]tP [n − 1] . (10)

The vector of the filter impulse responses, H[n], is then updated
by:

H [n] = H [n − 1] + en [n] k [n] . (11)
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