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a  b  s  t  r  a  c  t

The  second-order  difference  plot,  as a  modified  Poincaré  plot,  is one  of the  important  approaches  for
assessing  the  dynamics  of  heart  rate  variability.  However,  corresponding  quantitative  analysis  methods
are relatively  limited.  Based  on the  second-order  difference  plot,  we  propose  a novel  method,  called  the
multi-scale  feedback  ratio analysis,  which  can  measure  the feedback  properties  of  heart  rate  fluctuations
on  different  temporal  scales.  The  index R̄[�1,�2]

TF is  then  defined  to  quantify  the  average  feedback  ratio
through  a definite  scale  range.  Analysis  of  Gaussian  white, 1/f and  Brownian  noises  show  that  the feedback
ratios  are  indeed  on  different  levels.  The  method  is  then  applied  to heartbeat  interval  series  derived  from
healthy  subjects,  subjects  with  congestive  heart failure  and  subjects  with  atrial  fibrillation.  Results  show
that, for all  groups,  the  feedback  ratios  vary  with  increasing  time  scales,  and  gradually  reach  relatively
stable  states.  The R̄[10,20]

TF values  of the  three  groups  are  significantly  different.  Thus, R̄[10,20]
TF becomes

an effective  parameter  for  distinguishing  healthy  and  pathologic  states.  In  addition, R̄[10,20]
TF for  healthy,

congestive  failure and atrial  fibrillation  subjects  are  close  to those  of  the  1/f,  Brownian  and  white  noises
respectively,  indicating  different  intrinsic  dynamics.

© 2014  IPEM.  Published  by Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The Poincaré plot is the classic method for qualitative and quan-
titative study of chaotic phenomena. A standard Poincaré plot of
the heart rate is a scatter plot of the current RR interval (suc-
cessive R peaks interval in the electrocardiogram) against the RR
interval immediately following [1]. It has been reported to have
the ability to reveal patterns of heart rate dynamics resulting from
nonlinear processes that are not readily available from a conven-
tional time-domain or frequency-domain analysis [2–4], and thus
has been extensively used for the assessment of the dynamics of
heart rate variability (HRV) [2,5–9]. However, because the instan-
taneous heart rate is mainly concerned, the standard Poincaré plot
of the heart rate contains much redundant information specif-
ically of linear correlation, which complicates the extraction of
nonlinear features. As an improvement, a modified Poincaré plot,
named the second-order difference plot [10–12], is also used. It is
a scatter plot of the current �RR interval (difference of successive
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RR intervals) against the �RR interval immediately following. It
has four quadrants (shown in Fig. 1), and accordingly, four patterns
can be identified: +/+ (quadrant I; a lengthening-sequence, cardiac
deceleration), −/+ or +/− (quadrant II or IV, respectively; balanced
sequences), and finally −/− (quadrant III; a shortening-sequence,
cardiac acceleration) [13]. This plot removes the dominant charac-
teristics apparent in the Poincaré plot, namely the high correlation
between consecutive intervals, and highlights the correlation of
variability between consecutive rate values [13,14], i.e., it measures
the change of heart rates of three successive heart beats rather than
an instantaneous heart rate. In addition, as a result of the differ-
ential process involved in the plot construction, the interference
caused by the nonstationarity of the original physiologic series will
be significantly reduced. Consequently, it may be more conducive
to find the intrinsic mechanism of the cardiac dynamic system.
Besides, the second-order difference plot is easy to construct and
understand. For some indices in the standard Poincaré plot, the def-
initions can be greatly simplified if the second-order difference plot
is taken, e.g. the clouds I, D, and N in [7].

Some indices have been proposed as quantitative analysis of the
second-order difference plot, such as the central tendency mea-
sure (CTM) [10,12] and the distribution entropy (DE) [15]. Overall,
related reports are limited. And the current methods require either
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Fig. 1. An illustration of the second-order difference plot. In this example, the orig-
inal  RR series is from a healthy subject in MIT-BIH Normal Sinus Rhythm Database
(record no. 16539, female, 35 years old). The differential sequence of the RR series is
defined as �RRn , and the scatter points are plotted with coordinates (�RRn , �RRn+1)
in  the two-dimensional plane. Thus, the plot is divided into four quadrants, marked
as  I, II, III and IV, respectively. The notations in each of the quadrants explain the
changes in sign sequences represented by each quadrant.

a very long data length, or relatively complex calculation, which is
not very suitable for real time monitoring application.

In this study, motivated by the descriptions of quadrant II and
IV patterns and quadrant I and III patterns as previously reported
[13,14], we propose a new method, named the feedback ratio analy-
sis. In addition, it has been realized that heart rates are regulated by
various mechanisms, ranging from subcellular to systemic levels,
and multiple feedback loops incorporating different delays. Con-
sequently, the heartbeat interval time series (RR interval series)
should exhibit various dynamic characteristics over multiple time
scales [16,17]. For these reasons, we further propose a multi-scale
analysis of the feedback ratio. This method is then applied to
simulated noises and heartbeat interval series from healthy and
pathologic subjects.

2. Methods

2.1. Feedback ratio analysis

In the second-order difference plot shown in Fig. 1, the heart
rate variation mode represented by quadrants I and III can be sum-
marized as follows: the changes will be followed by changes in
the same direction (continuous acceleration or deceleration of the
heart rate), which is similar to a certain positive feedback effect.
Under this effect, the RR interval (or heart rate) will tend to devi-
ate from the original state. For quadrants II and IV, the heart rate
variation mode can be summarized as follows: the changes will be
followed by changes in the opposite direction, so that accelerations
and decelerations alternate in time, which is similar to a certain
negative feedback effect. Under this effect, the RR interval will be
dragged back and tend to oscillate.

In a dynamic system, if the positive feedback mechanism is
absolutely dominant, the system will be divergent and there will be
no attractors; on the contrary, if the negative feedback mechanism
is absolutely dominant, the system will tend to be constant or
periodic. The cardiac dynamic system, as a typical dissipative
system far from equilibrium, contains both positive feedback and

negative feedback effects. Therefore, to summarize the general
feedback characteristics and to show the overall tendency, we
defined a general parameter, named total feedback ratio, RTF:

RTF = NI + NIII

NII + NIV
(1)

where NI, NII, NIII and NIV represent the number of points in
quadrants I, II, III and IV, respectively.

2.2. Multi-scale feedback ratio analysis

Further, we used a multi-scale analysis based on coarse-graining
the original time series on multiple temporal scales. Given the origi-
nal heartbeat interval time series of length N as {ri} (i = 1, 2, 3, . . .,  N),
the consecutive coarse-grained time series {xj} is constructed as:

x(�)
j

= 1
�

j�∑

i=(j−1)�+1

ri, 1 ≤ j ≤ N

�
(2)

where the integer � represents the coarse-graining scale factor. The
length of {x(�)

j
} is equal to the length of the original time series

divided by the scale factor � [18]. Then, the corresponding differ-
ential series of {x(�)

j
} can be calculated as:

y(�)
k

= x(�)
k+1 − x(�)

k
, 1 ≤ k ≤ N

�
− 1 (3)

Finally, the second-order difference plots for each coarse-
grained time series are plotted based on {y(�)

k
} and the RTF values

are calculated as functions of the scale factor �.
For the selection of �, we  just followed Costa et al. [18] and set the

scale factor in the range of 1–20. In fact, this range comprises both
“large” and “small” time scales compared to a typical respiratory
cycle length, which is approximately five cardiac beats [18]. A larger
� (greater than 20) is theoretically feasible; however, to guarantee
the statistical effectiveness, it will raise the demand for a longer
data length, which is hard to acquire, especially for a cardiac rhythm
series.

Furthermore, for an integrated quantitative description, the
mean RTF over a defined scale range [�1, �2] is considered and
designated as R̄[�1,�2]

TF :

R̄[�1,�2]
TF = 1

�2 − �1 + 1

�2∑

�=�1

R(�)
TF (4)

where R(�)
TF represents the RTF value corresponding to a specific scale

�.

2.3. Demands for the data length N

For stationary ergodic processes, it is suggested that the sam-
ple size should be far greater than the number of available states
for statistic validity. Although the cardiac rhythm is not usually
stationary, the differential process can largely remove the non-
stationary trend, so that the above principle can still be applicable.
For this method, there are only two  states of adjacent heartbeat
interval variability: monotonic variation and alternative variation.
Thus, theoretically, dozens of scatter points (e.g., 50 points) in the
second-order difference plot will be sufficient. That is, when the
largest � is set to 20, N should be at least set to 20 × 50 = 1000. Addi-
tionally, a better statistical effectiveness may  be achieved when a
larger N is selected.
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