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a  b  s  t  r  a  c  t

We  study  the  impact  of varying  degrees  of unilateral  stenoses  of  an  carotid  artery  on pulsatile  blood
flow  and  oxygen  transport  from  the  heart  to the  brain.  For  the numerical  simulation  a  model  reduction
approach  is used  involving  non-linear  1-D transport  equation  systems,  linear  1-D  transport  equations  and
0-D models.  The  haemodynamic  effects  of  vessels  beyond  the outflow  boundaries  of the  1-D  models  are
accounted  for using  a 0-D  lumped  three  element  windkessel  model.  At  the  cerebral  outflow  boundaries
the  0-D  windkessel  model  is extended  by metabolic  autoregulation,  based  on  the  cerebral  oxygen  supply.
Additionally  lumped  parameter  models  are applied  to  incorporate  the  impact  of  the  carotid  stenosis.  Our
model  suggests  that  for a  severe  unilateral  stenosis  in the  right  carotid  artery  the  partial  pressure  of oxy-
gen  in  the  brain  area  at risk can  only  be  restored,  if the  corresponding  cerebral  resistance  is significantly
decreased  and  if the  circle  of  Willis  (CoW)  is  complete.

© 2014  IPEM.  Published  by Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Despite improvements in primary prevention, the incidence of
atherosclerotic vascular lesions and their consequences for organ
function and integrity will remain a major medical problem in
an aging society [18]. Stenoses in the carotid arteries are rele-
vant causes of brain ischaemia [26] when they become occluded
either by an increasing stenosis or, more acutely, by the devel-
opment of a thrombus. The reduction of blood flow due to a
stenosis in one carotid artery can potentially be compensated
by blood flow through collateral vessels known as the circle of
Willis (CoW) [21] being fed by the contralateral carotid artery
[16,20,21,24,34].

There exist many approaches to model this situation mathe-
matically in order to predict the amount of blood flow, that, under
a given degree of stenosis, can be supplied by the contralateral
carotid artery via the CoW. In order to avoid time consuming
3-D computations, several models are based on reduced 1-D and
0-D lumped parameter models, which can be derived from the
incompressible 3-D Navier–Stokes equations and a convection
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diffusion equation by averaging techniques, see, e.g., [4,6,[8,
Chapter 2],10[11, Chapter 10], 28]. Using these reduced and
lumped parameter models, different multi-scale models for pul-
satile blood flow within arterial networks were developed [2,9,[11,
Chapter 11],22,30,31,36]. An analysis on the existence and unique-
ness of the solution of these models can be found in Quarteroni et al.
[10,23]. The accuracy of a multi-scale model, was  investigated, e.g.,
in Alastruey et al. [1,4]. Within these references, the authors applied
this multi-scale model to human arterial trees, consisting of the
larger arteries and found a good agreement between the numerical
results and medical data. To incorporate the impact of a stenosis,
in some publications a 0-D lumped parameter model replaces the
stenosis and couples the adjacent reduced models [19,29,32,35].

In this paper, a multi-scale model is presented, in which
we interconnect different types of reduced 1-D or 0-D lumped
parameter models at the bifurcations of the arterial network.
By this, the different features of large and middle sized vessels
and also small vessels can be better accounted for. In addition,
the coupling of the linearized 1-D models and the 0-D lumped
parameter models can be described by linear systems of equations
which can be solved with less effort than the non-linear ones. A
similar approach was investigated in Cristiano et al. [7], where
a 3-D model for the abdominal aorta and a 1-D model for the
remaining vessel system are used. To simulate oxygen transport,
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Fig. 1. Outflow boundaries marked with an • are coupled with a three element
windkessel model having fixed resistances [3]. Resistances at outflows marked with
◦  are variable, depending on the partial pressure of oxygen in the brain tissue.

most of the existing models have to be extended by an additional
equation and coupling equations at the bifurcations. Furthermore,
none of the mentioned models considers the consequences of
collateral blood flow for the oxygen supply of brain tissue. We
modify and generalize existing models [2] including metabolic
cerebral autoregulation, to understand the consequences for mean
oxygen tension in brain areas at risk under conditions of varying
unilateral stenoses and collateral blood flows.

2. Mathematical models

For the simulation of blood flow and oxygen transport from the
heart to the brain, we consider the arterial vessel system, presented
in Alastruey et al. [2,3].

It consists of 33 arteries, containing the circle of Willis and the
most important arteries, branching out of the heart (see Fig. 1).
Our numerical scheme is based on a domain decomposition tech-
nique, i.e., we split the network into its single vessels and assign
in a first step, a decoupled submodel to each vessel. Only in a
second step, we  interconnect the independent subsystems by suit-
able transmission conditions. The simulation of blood flow and the
oxygen transport within a single vessel is carried out by reduced
models. These models have the form of 1-D transport equation sys-
tems or 0-D lumped parameter models [3,4,8,9,[11, Chapters 7, 10,
11],19,31,32,37]. Considering the given vessel system, it becomes
obvious that this network is composed of arteries having differ-
ent length scales. Therefore, it is beneficial to use different models
taking the special features of the vessels into account. The arter-
ies within or near the CoW exhibit elastic properties which differ
considerably from those of the aorta (vessel 1 in Fig. 1). We apply
non-linear transport equation systems [2,6] [8, Chapter 2] to the
larger vessels �i, numbered by i ∈

{
1, . . .,  9, 15,  16,  34

}
and linear

transport equation systems, incorporating the small displacement
property, to the vessels �i, numbered by i ∈ {10, . . .,  14, 17, . . .,  26,
29, 30, 32, 33}  (see Fig. 1). Due to their small length (below 1 cm)
and section area, the blood flow and oxygen transport through the
remaining vessels �i numbered by i ∈ {27, 28, 31}  are computed
by 0-D lumped parameter models [3,4]. The corresponding sub-
systems are coupled at the bifurcations by appropriate algebraic
constraints. The following subsections describe the characteristic
features belonging to our model in more detail. In particular, we
outline how the existing models can be extended to simulate the
transport of oxygen.

2.1. Modeling the blood flow and oxygen transport within a
single vessel

The non-linear 1-D transport system for the ith vessel �i having
the length li and the section area A0,i is given by [3,4][8, Chapter 2]:
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where Ai, Qi, �i and pi denote the section area, average volumetric
flux, averaged concentration and mean pressure of the ith vessel,
i ∈ {1, . . .,  33}, respectively. By z and t, we denote the space and time
variable. � is the blood density. The coefficient Kr is a resistance
parameter linked to the blood viscosity �: Kr = 22��/�. The main
assumptions leading to this specific choice of Kr are provided in
Alastruey et al. [4]. If G0,i and A0,i are constant along z, a suitable
way to close this system is to provide an algebraic relation between
the pressure and the vessel area Ai:
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where Ei is the Young modulus, h0,i is the vessel thickness and � is
the Poisson ratio. Since biological tissue is practically incompress-
ible, we  choose the Poisson ratio: � = 0.5. The algebraic equation (2)
assumes that the vessel wall is instantaneously in equilibrium with
the pressure forces acting on it. Further effects like wall inertia and
viscoelasticity could be incorporated, by the help of a differential
pressure law, presented e.g. in Alastruey et al. [5] and Formaggia
et al. [11, Chapter 10].

An analysis of the characteristics of the system (1a), (1b), (1c)
and (2), reveals that changes in pressure, flow rate and concentra-
tion are propagated by W1,i, W2,i and W3,i [8, Chapter 2]:
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where under physiological conditions, i.e.,
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it can be shown that W1,i is a backward and W2,i is a forward trav-
eling wave. The propagation of W3,i depends on the sign of Qi.

Based on the small displacement hypothesis Ai ≈ A0,i = �R2
0,i

and the assumption that G0,i and A0,i are constant along z, we lin-
earize the non-linear transport equation system given by (1a), (1b)
and (2) about the reference state

(
A0,i, 0, 0

)
[23]. The propagation

of the oxygen concentration is carried out by a transport equation,
whose velocity field is determined by the ratio of the flow rate and
the section area A0,i [4] [8, Chapter 6]:
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