
Medical Engineering & Physics 36 (2014) 659–669

Contents lists available at ScienceDirect

Medical  Engineering  &  Physics

jo ur nal ho me p ag e: www.elsev ier .com/ locate /medengphy

Validity  of  using  tri-axial  accelerometers  to  measure  human
movement  –  Part  II:  Step  counts  at  a  wide  range  of  gait  velocities

Emma  Fortune,  Vipul  Lugade,  Melissa  Morrow,  Kenton  Kaufman ∗

Motion Analysis Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905, USA

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 18 June 2013
Received in revised form 2 December 2013
Accepted 6 February 2014

Keywords:
Accelerometer
Step detection
Body-worn sensors
Gait velocity

a  b  s  t  r  a  c  t

A  subject-specific  step  counting  method  with  a high  accuracy  level  at all  walking  speeds  is  needed  to
assess  the  functional  level  of impaired  patients.  The  study aim was  to validate  step  counts  and  cadence
calculations  from  acceleration  data  by  comparison  to  video  data  during  dynamic  activity.  Custom-built
activity  monitors,  each  containing  one  tri-axial  accelerometer,  were  placed  on the  ankles,  thigh, and  waist
of 11  healthy  adults.  ICC  values  were  greater  than  0.98 for  video  inter-rater  reliability  of  all  step  counts.  The
activity  monitoring  system  (AMS)  algorithm  demonstrated  a median  (interquartile  range;  IQR) agreement
of  92% (8%)  with  visual  observations  during  walking/jogging  trials  at gait  velocities  ranging  from  0.1  to
4.8  m/s,  while  FitBits  (ankle  and  waist),  and  a Nike  Fuelband  (wrist)  demonstrated  agreements  of 92%
(36%),  93%  (22%),  and  33%  (35%),  respectively.  The  algorithm  results  demonstrated  high median  (IQR)
step  detection  sensitivity  (95%  (2%)),  positive  predictive  value  (PPV)  (99%  (1%)),  and  agreement  (97%
(3%))  during  a laboratory-based  simulated  free-living  protocol.  The  algorithm  also  showed  high median
(IQR)  sensitivity,  PPV,  and  agreement  identifying  walking  steps  (91%  (5%),  98% (4%),  and  96%  (5%)),  jogging
steps  (97%  (6%),  100%  (1%), and  95% (6%)),  and  less  than  3%  mean  error  in cadence  calculations.

© 2014  IPEM.  Published  by Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Physical inactivity is an independent risk factor for chronic dis-
ease and disability and is estimated to result in 3.2 million deaths
world-wide each year [1]. Regular physical activity has been asso-
ciated with health improvements in many populations [2]. Many
commonly used mobility assessment methods have limitations
such as subjectivity [3] or involve clinical-based evaluations that
fail to mimic  real-world functional requirements, such as the 10 m
walk test which underestimates gait velocity predictions in a com-
munity setting [4]. It is important to quantitatively assess mobility
in the free-living environment as health and wellness measure. This
can be accomplished with accurate measurement of step counts
and cadence in the home and community.

Step counting is one of the most commonly used measures of
physical activity [5]. Sensors can provide objective information on
movement while their small size and light weight allow for home
deployment. One of the main issues associated with step counts as a
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physical activity measure is that high accuracy is needed. Many pre-
vious studies have assessed the step count and gait event accuracy
of pedometers, accelerometers, and gyroscopes [6–11]. However,
limited information on the algorithms and the data analysis meth-
ods are provided and the protocols performed are overly simplified,
often consisting of long periods of continuous walking which are
inconsistent with most daily living activities. The step detection
accuracy of many sensors has also been shown to decrease for
shorter activity duration and at slower walking speeds [8,12–14],
particularly in older patients. The need for accurate step counts
at slow walking speeds is of critical importance as slow walking
speeds can be indicative of movement disorders [15], mobility dis-
ability [16], and have been linked to high risk for reduced function,
morbidity, and mortality [17]. Increases in walking speed and the
ability to vary cadence demonstrate increased function level [18],
reduced risk, and higher predictions of survival [17,19]. While a
small number of studies have shown that results from the methods
they used are not affected by different walking speeds, accuracy
during shuffling, stair climbing, and jogging have yet to be investi-
gated and only limited gait velocity ranges are examined [14,20,21].
Furthermore, the use of step counts as a measure of physical activ-
ity is limited as the characteristics of the steps are unknown. An
activity monitoring system (AMS) capable of identifying walking
step counts, jogging step counts, and the ability to vary cadence
while walking and jogging can be beneficial as it gives informa-
tion on an individual’s functional level. Furthermore, an objective
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portable method for the functional assessment of patients, partic-
ularly those with slow walking speeds, could serve as a beneficial
motivational rehabilitation tool and an effective clinical outcomes
measure in the free-living environment.

The aim of this study was to determine the validity and reliabil-
ity of a custom-designed AMS  as an objective adaptive step counter.
The algorithm’s accuracy was validated with visual step counts and
was compared to two commercial step counters (Fitbit Tracker (Fit-
bit, San Francisco, CA) and Nike+ Fuelband (Nike, Beaverton, OR))
during walking and jogging trials at a range of gait velocities. The
validity and reliability of the AMS  algorithm were also evaluated
for walking and jogging segments in healthy adults during a proto-
col of simulated free-living dynamic activities in the laboratory by
comparison to video recordings.

2. Materials and methods

2.1. Experimental design

Accelerometer and video data were acquired from 12 (3 M,  9
F) healthy adults as they performed 7–10 walking/jogging trials
in a straight line over an 8.5 m walkway (with additional room to
accelerate and decelerate). Subjects wore two different commer-
cial devices (Fitbit monitors on the right lateral ankle and the waist
and a Nike Fuelband on the right wrist) in addition to the AMS
which consisted of accelerometers below the navel on the waist, on
the right thigh lateral midpoint, and bilateral ankles. Gait velocities
were calculated based on the distance travelled and the time dura-
tion recorded by photocells placed at either end of the walkway. For
the initial trial, subjects were asked to walk at a self-selected normal
gait velocity. Following each trial, subjects were given instructions
to walk/jog at a slower/faster speed, until a suitable range of gait
velocities was obtained. The steps were counted visually by two
raters. A total of 105 trials were recorded in total. Accelerometer
and video data were also recorded as subjects performed an approx-
imately 5 min  protocol of static and dynamic activities involving
standing, sitting, lying, postural transitions, walking, stair climb-
ing, and jogging in the laboratory [22]. Verbal cues were provided
by an investigator for each task. Additionally, subjects were asked
to fidget to simulate activity during selected sitting and stand-
ing tasks. All activities were performed at self-selected speeds. At
the time of evaluation, the subjects’ median (range) age and aver-
age (SD) body mass index (BMI) were 31 (25–55) years, and 24.7
(5.5) kg m−2, respectively. Exclusion criteria were a history of mus-
culoskeletal deficits, neurological impairment, or lower extremity
surgery. The study protocol was approved by the Mayo Clinic Insti-
tutional Review Board and each subject provided written informed
consent before participating.

2.2. Data collection

The AMS  consisted of four Mayo Clinic custom-built activity
monitors which were secured with straps. Each activity monitor
incorporated a tri-axial MEMS  accelerometer (analog, ±16 g, Ana-
log Devices), and onboard data storage of up to 0.5 GB [22]. Monitors
were programmed to sample each axis at 100 Hz. Video data were
simultaneously acquired at 60 Hz using a handheld camera. Video
data were synchronized to accelerometer data by three vertical
jumps performed by subjects prior to and following the described
protocol. The four accelerometers were also synchronized to each
other after the final jump.

2.3. Signal processing

Step numbers and heel-strike timings for AMS step detec-
tion were determined from the bilateral ankle activity monitors

(Fig. 1). All accelerometer data post-processing and analysis were
performed offline using MATLAB (Version 7.11.0, Mathworks, Nat-
ick, MA). A median filter, with a window size of 3, was applied
to the orthogonal raw acceleration signals to remove any high-
frequency noise spikes. The resulting filtered signal was separated
into its gravitational component using a third-order zero phase
lag elliptical low pass filter, with a cut-off frequency of 0.25 Hz,
0.01 dB passband ripple and −100 dB stopband ripple. Subtracting
the gravitational component from the original median filtered sig-
nal provided the bodily motion component [23].

2.4. Activity detection

In a parallel study by the authors [22], dynamic activity was
detected by calculating when the signal magnitude area (SMA)
of the bodily motion component of the waist accelerometer data
exceeded a threshold of 0.135 g [24] for epochs of 1 s. Of those
seconds of data (which were below 0.135 g) identified as non-
activity, a continuous wavelet transform using a Daubechies 4
Mother Wavelet was  applied to the waist acceleration signal. Data
which fell within a range of 0.1–2.0 Hz was further identified as
activity, if it exceeded a scaling threshold of 1.5 over each second
[22]. Upright activity was identified using the angles estimated
from the waist and thigh accelerometers. Activity was charac-
terized as jogging when the SMA  exceeded 0.8 g and as walking
(including stair climbing and fidgeting of the feet while standing)
when the SMA  was between 0.135 and 0.8 g. The threshold of 0.8 g
was determined from this dataset [22], based on comparisons of
SMA  to video data for a single subject and validated across all sub-
jects.

2.5. Step detection

During identified walking and jogging segments, the antero-
posterior accelerations (aAP) of the ankles were filtered using a
low-pass butterworth filter with a cut-off frequency of 6 Hz and
analyzed using a peak detection method [9] with adaptive aAP
thresholds similar to those previously formulated for angular veloc-
ity [20] and an adaptive timing threshold to calculate the number
of steps taken (Fig. 1).

Gait events, gait velocity, and cadence are useful when describ-
ing normal and pathological gait [25]. Step counting methods are
often based on toe-off, heel-strike, and/or midswing identifica-
tion with defined absolute thresholds determining the acceleration
values these gait events must reach and how much time must
lapse between consecutive gait events to identify valid steps [9].
As gait velocity, cadence, and swing phase usually decrease with
increasing disability, the gait event accelerations also decrease
and the time between gait events increases [25]. These parameter
changes can cause accuracy issues when using absolute thresh-
olds to assess subjects with slower/pathological gait velocities.
Even within-subject gait velocity changes can reduce accuracy, i.e.
walking slowly while performing household chores, may  result in
activity underestimation [26]. To overcome these issues, our algo-
rithm incorporates adaptive thresholds for acceleration and time
between gait events.

2.5.1. Calculate initial adaptive thresholds (Fig. 1b)
The adaptive peak detection thresholds allow for greater step

detection accuracy at different walking speeds. For each contin-
uous data segment classified as walking or jogging, adaptive aAP
thresholds to detect heel-strike points were calculated,

th1 = 0.8 × (1/N)  ×
N∑

i=1

aAPi
< āAP (1)
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