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In this paper, the authors describe a method of accurately detecting human activity using a smartphone
accelerometer paired with a dedicated chest sensor. The design, implementation, testing and validation
of a custom mobility classifier are also presented. Offline analysis was carried out to compare this custom
classifier to de-facto machine learning algorithms, including C4.5, CART, SVM, Multi-Layer Perceptrons,
and Naive Bayes. A series of trials were carried out in Ireland, initially involving N=6 individuals to test
the feasibility of the system, before a final trial with N=24 subjects took place in the Netherlands. The
protocol used and analysis of 1165 min of recorded activities from these trials are described in detail in
this paper. Analysis of collected data indicate that accelerometers placed in these locations, are capable
of recognizing activities including sitting, standing, lying, walking, running and cycling with accuracies
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as high as 98%.
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1. Introduction

Novel approaches to the ubiquitous identification of physical
activity are beginning to emerge as a modern day necessity. Over-
whelming evidence exists to suggest that physical inactivity can
greatly increase the likelihood of several non-communicable dis-
eases, including, coronary heart disease, type Il diabetes and even
particular forms of cancer. A recent Lancet publication [1] esti-
mates that physical inactivity causes 9% of all premature deaths
worldwide. This figure represents over 5.8 million deaths in 2008
alone. Furthermore, eradicating physical inactivity would increase
life expectancy of the world’s population by an average of 0.68
years.

This sentiment is echoed in publications by the U.S. Department
of Health and Human Services, which found a strong correla-
tion between increased physical activity and a lower risk of heart
disease, stroke, high blood pressure, type Il diabetes and even par-
ticular forms of cancer. Research conducted by Heidenreich et al.
[2]and Dall et al. [3] documents the financial burden caused by such
diseases. Heidenreich et al. found the total cost in 2010 of coronary
heart disease among Americans to be $108.9 billion, while Dall et al.
estimated the 2007 cost of Americans suffering type Il diabetes to
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be in excess of $159 billion. Furthermore, the prevalence of cardio-
vascular disease and stroke is predicted to increase by an average
of 20.75% among the American populous by 2030. A similar report
by Leal et al. [4] places the 2003 total cost of coronary heart disease
in the EU area at €44.7 billion ($56.5 billion, at 2003 rates'), which
includes €294 million ($371 million, at 2003 rates') for Ireland.

Thus, acompelling case exists to monitor physical activity, or the
lack thereof, in a manner which strives to be unobtrusive, yet objec-
tive. Such a monitor can play a significant role in a shift towards
user driven preventative healthcare. Traditionally, logging bouts of
physical activity has proven tedious and cumbersome, with many
individuals relying solely on biased self-report methods. Recently,
several MEMs sensors have emerged as potential candidates in the
determination of human activity, including the accelerometer.

In this paper we compare several activity recognition classi-
fiers, including a custom built classifier with the goal of recognizing
six key activities, using two accelerometers. The comparison was
performed with data collected in trials from 30 volunteers.

2. Background

Numerous standalone devices already exist in the market which
use a dedicated, embedded device, often strapped to the user,

1 European Central Bank - Statistical Data Warehouse, Historical €/$ Exchange
Rate (Referencing value as of 31/12/2003). Available at: http://sdw.ecb.int/ [accessed
31.01.13].
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typically using belts or tape, e.g. the ActiGraph? or ActivPal®
devices. Recently however, the feasibility of smartphones to the
field of physical activity monitoring has become increasingly appar-
ent.

Yang [5] attempted to use motion recognition from a phone’s
accelerometer for use in physical activity diary applications. Yang
uses a Nokia N95 to sample the accelerometer at approximately
36 Hz, for activities including sitting, standing, walking, running,
driving and cycling. The samples were then uploaded to a server
for later annotation and post analysis. Yang used the WEKA learn-
ing toolkit to compare the accuracy rates of C4.5 Decision Trees,
Naive Bayes, k-Nearest Neighbour, and Support Vector Machines.
The study found that vertical and horizontal features have greater
impact on recognition rates than magnitude features alone. Using
tenfold cross validation, this feature set coupled with the C4.5 algo-
rithm achieved 90.6% accuracy.

Bieber et al. [6] used Sony Ericson phones including the w715 to
recognize stand-up and sit-down transitions. Recognition rates of
up to 90% were achieved, dependent on the type of clothing worn.
However, Bieber did not test other activities of daily living outside
of these stand-up and sit-down transitions.

Finally, studies have also focused on orientation independence
of a monitoring device. Mizell [7] suggested that the orienta-
tion constraint associated with existing mobility devices could
be relaxed somewhat. The author also proposed that tracking
the magnitude and direction of the vertical component was suf-
ficient for the majority of activity recognition. The magnitude
contained in the horizontal component may also be calculated,
but not the direction. Thiemjarus et al. [8] classified activities on
a smartphone with the help of the mean gravity vector. Thiemjarus
claims accuracies varying from 83% to 90%, although it is clear that
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difficulties were encountered when differentiating between lying
and sitting activities. Results were validated against an earlier
experiment where five subjects performed scripted activities.

Although standard classifiers often perform well in recognizing
physical activity, the limited resources available on smartphones
make training difficult. For this reason, the authors have also inves-
tigated the use of custom classifiers, which gives total control over
the training phase.

3. Sensor setup

Both a Samsung Galaxy S GT-19000 and a PLUX chest sensor were
used to gather tri-axial accelerometer readings from the thigh and
sternum respectively. The Galaxy S integrates Bosch’s SMB 380 tri-
axial, capacitive accelerometer, which consumes 290 A while in
use. This device largely fulfils the ubiquitous, unobtrusive sensing
requirements desired by mobility monitoring applications.

For the purposes of this scripted trial, the smartphone was
placed loosely in the participant’s trouser pocket, and acceleration
data stored on the SD card. The pocket chosen and initial orienta-
tion of the device were left entirely at the participant’s discretion.
The chest sensor was placed inside a chest strap which was then

2 ActiGraph - Activity Monitoring Devices. Available at: http://www.

theactigraph.com/ [accessed 30.03.12].
3 PAL Technologies Ltd - ActivPal. Available at: http://www.paltech.

plus.com/products.htm [accessed 30.03.12].
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worn comfortably by the participant, which ensured device ori-
entation remained fixed. It is highly likely that such a sensor will
be embedded in clothing in the near future, as has been demon-
strated in existing European FP7 projects, including eCAALYX [9].
A Bluetooth Serial Port Profile connection was created between the
phone and the chest sensor. Thus, the phone acted as a data server,
whereby raw sensor data from both sensors was collected for later
preliminary processing and activity inference on the participant’s
smartphone. Typical sampling rates were in the range of 90-100 Hz
for the phone, and 500 Hz for the chest sensor.

4. Signal processing

Initial data processing is undertaken on the smartphone itself,
with the aim of synchronizing the raw acceleration signals from
both phone and chest sensor. To this end, a common fixed samp-
ling rate is defined a priori between the Android device and the
dedicated PLUX chest sensor. Thus, data from the smartphone’s
accelerometer is interpolated in real time. Similarly, chest sensor
data is downsampled from a fixed 500Hz to 120 Hz. This inter-
polation and downsampling process facilitates subsequent signal
processing, including low and bandpass filtering.

Once interpolation completes, the static component due to grav-
ity is isolated from the dynamic components caused by movement.
A cut off frequency of 0.7 Hz is chosen for the lowpass, while the
range from 0.25Hz to 10Hz is chosen for the bandpass. Since
raw accelerometer data from both devices are aligned to differ-
ing coordinate systems, a rotation to a world fixed coordinate
system is carried out to facilitate further analysis and activity
classification. The equation used for this rotation can be found
in Eq. (1).
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where x, y and z denote a unit vector, and ¢ is the rotation angle
required to rotate the y-axis of the device coordinate system, to the
corresponding world fixed coordinate system.

An activity inference algorithm is then executed, which begins
by computing features, including activity counts, the highest fre-
quency found, and the angles of both devices to the vertical,
gravitational axis. As the orientation of the phone can vary some-
what in a user’s pocket, efforts are made to enhance angular
measurements by tracking the mean gravity vector when partic-
ipants begin walking. When participants transition from walking,
it is inferred unconditionally that they are now standing, and a
simple rotation may be required, to reflect the phone’s new ori-
entation. The algorithm waits for the presence of at least 15s of
walking, before updating the gravity vector with this data. Fifteen
seconds was deemed appropriate, as this incorporates a number of
gait cycles. A window of acceleration samples is logged until this
bout of walking ceases. Enough information now exists to update
the gravity vector. The algorithm crops 15% of samples from either
side of the movement buffer before computing both the mean grav-
ity vector and mean angle. This cropping was deemed appropriate
to avoid overlaps with other activities, such as suddenly sitting
down. Instantaneous angles are then updated to reflect this new
mean angle, thus eliminating spurious angles generated during the
prior feature generation phase.

The activity inference algorithm computes time domain based
activity counts in one second windows. Signal decomposition in
the frequency domain is also undertaken for the thigh every fif-
teen seconds. Frequency bands containing the highest energy are
recorded for each of these intervals. Together, both activity counts
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