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a  b  s  t  r  a  c  t

The  key  point  to  calculate  augmentation  index  (AIx)  related  to  cardiovascular  diseases  is  the  precise
identification  of  the shoulder  point.  The  commonly  used  method  for extracting  the  shoulder  point  is  to
calculate  the  fourth  derivative  of  the pulse  waveform  by  numerical  differentiation.  However,  this  method
has a poor  anti-noise  capability  and  is computationally  intensive.  The  aims  of  this  study  were  to develop
a  new  method  based  on the  2nd-order  B-spline  wavelet  for  calculating  AIx,  and  to  compare  it  with
numerical  differentiation  and  Savitzky–Golay  digital  differentiator  (SGDD).  All  the  three  methods  were
applied  to  pulse  waveforms  derived  from  60 healthy  subjects.  There  was  a significantly  high  correlation
between  the  proposed  method  and  numerical  differentiation  (r =  0.998  for  carotid  pulses,  and  r  =  0.997
for  radial  pulses),  as  well  as  between  the  proposed  method  and  the  SGDD  (r  =  0.995  for  carotid  pulses,  and
r =  0.993  for  radial  pulses).  In  addition,  the anti-noise  capability  of  the  proposed  method  was evaluated  by
adding  simulated  noise  (>10  Hz)  on  pulse  waveforms.  The  results  showed  that  the  proposed  method  was
advantageous  in  noise  tolerance  than  the  other  two  methods.  These  findings  indicate  that  the  proposed
method  can  quickly  and  accurately  calculate  AIx with  a good  anti-noise  capability.

© 2014  IPEM.  Published  by  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Augmentation index (AIx) is widely used in assessing arterial
stiffness [1,2]. Many clinical researches have proved that the AIx
is closely related to cardiovascular diseases [2–4]. Recently, AIx
was also used in evaluating the treatments, drug effects, and other
related medical researches [5–7]. The key step to calculate AIx is
the precise identification of the shoulder point on the waveform.
In 1989, Kell et al. first proposed that the shoulder point could be
extracted by the fourth derivative of the pulse waveform [8]. And
in 1995, Takazawa et al. described the algorithm in detail [9], which
has been widely used to calculate AIx [9,10]. As shown in Fig. 1, for
type A pulse waveforms, the shoulder point located on the upstroke
wave coincides with the first positive-to-negative zero crossing of
the fourth derivative; whereas for type C and radial waveforms, the
shoulder point located on the downstroke wave corresponds to the
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second negative-to-positive zero crossing. With diverse positions
of shoulder points, the corresponding definitions of AIx are also
different (Fig. 1).

Traditionally, the method based on numerical differentiation
is used to approximate to the derivate of a signal [11]. However,
this method has inherent flaws degrading it in pulse wave analysis
(PWA). A major problem is that the numerical differentiation can
greatly amplify the noise, especially at high frequencies. Therefore,
it is essential to perform appropriate denoising of the pulse wave
signal prior to differentiation [12,13]. Unsatisfactorily, it further
increases the complexity of the algorithm and may  filter out useful
information contained in the pulse wave signal [14]. For example,
the Savizky–Golay (SG) filters are popularly applied in many fields.
When a SG filter is used, high-frequency noise in the pulse wave sig-
nal can be largely eliminated by increasing the length or the order of
the SG filter. However, some useful details of the signal will be also
smoothed out at the same time. In addition, Savitzky–Golay digital
differentiator (SGDD), another choice for acquiring the derivative
of the pulse wave signal, has the same problem in the choice of
lengths and orders [15].

Consequently, it is crucial to develop a new method for calculat-
ing the derivative of the pulse waveform, which is able to overcome
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Fig. 1. The relationship between the shoulder point and the 4th derivatives of the pulse waveforms, as well as the corresponding formulae of AIx. (a and b) The types A and
C  carotid waveforms, while (c) displays a radial waveform.

the aforementioned drawbacks. The differential property of con-
volution and spline wavelets make it a potential solution. Spline
wavelets are widely used in chemistry, image processing and bio-
logical signal processing, because they have explicit formulae in
both the time and frequency domain [16–18]. In particular, the 2nd-
order B-spline wavelet has been used to calculate the high order
derivative of chemistry signal successfully [16]. However, the 2nd-
order B-spline wavelet has not yet been applied to the calculation
of AIx.

The aim of this study is to investigate the accuracy and the
anti-noise capability of the proposed method for identifying the
shoulder points by the convolution of the pulse wave signal and
the function constructed by a cascade of two 2nd-order B-spline
wavelets (hereinafter referred to as the convolution method). In
the remainder of this paper, we first introduce the principle of the
algorithm. Then will be a comparison by form of figure display
among AIx calculated by the convolution method, the numerical
differentiation and the SGDD for the fourth order differentiation.
Subsequently, some waveform examples and a table are given to
show the performance of the convolution method on noise toler-
ance.

2. Theoretical background and algorithm

Wavelets consist of the dilations and translations of a function
 (t) satisfying a certain condition,

 a,b(t) = |a|−(1/2) 
(
t − b

a

)
, a, b ∈ R; a /= 0, (1)

where a and b are, respectively, the scale and position parameter
expressed in real number R.  (t) is known as the mother wavelet.

A B-spline wavelet of order m is defined as:

 m(t) = 2−m+1
2m−2∑
j=0

(−1)jˇ2m(j + 1 − m)ˇ(m)
2m (2t  − j + m − 1) (2)

where ˇm(x) is central B-spline of order m.  2nd-order spline
wavelets are used as the tools in this study due to their good

Fig. 2. 2nd-order spline wavelet, function ϕ1(t) and their Fourier transforms (FT).
The 2nd-order spline wavelet (a), FT of the 2nd-order spline wavelet (b), function
ϕ1(t) (c), FT of function ϕ1(t) (d).

performance on calculating the high order derivative of signals [16].
The mother wavelet is defined as
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 2(t) is an even function and its value is a real number as shown in
Fig. 2a. Then we define a new function using  2(t) as:
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