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a  b  s  t  r  a  c  t

Recent  advances  in  neuroimaging  demonstrate  the  potential  of  functional  near-infrared  spectroscopy
(fNIRS)  for  use  in  brain–computer  interfaces  (BCIs).  fNIRS  uses  light  in  the near-infrared  range  to  measure
brain surface  haemoglobin  concentrations  and  thus  determine  human  neural  activity.  Our  primary  goal
in this  study  is  to  analyse  brain  haemodynamic  responses  for  application  in  a BCI.  Specifically,  we  develop
an  efficient  signal  processing  algorithm  to extract  important  mental-task-relevant  neural  features  and
obtain  the  best  possible  classification  performance.  We  recorded  brain  haemodynamic  responses  due  to
frontal  cortex  brain  activity  from  nine  subjects  using  a 19-channel  fNIRS  system.  Our  algorithm  is  based
on  continuous  wavelet  transforms  (CWTs)  for  multi-scale  decomposition  and  a  soft  thresholding  algo-
rithm  for  de-noising.  We  adopted  three  machine  learning  algorithms  and  compared  their  performance.
Good  performance  can  be  achieved  by  using  the  de-noised  wavelet  coefficients  as  input  features  for  the
classifier.  Moreover,  the  classifier  performance  varied  depending  on the  type  of  mother  wavelet  used
for wavelet  decomposition.  Our  quantitative  results  showed  that  CWTs  can  be used  efficiently  to extract
important  brain  haemodynamic  features  at  multiple  frequencies  if an  appropriate  mother  wavelet  func-
tion is  chosen.  The  best  classification  results  were  obtained  by  a specific  combination  of  input feature
type  and  classifier.

© 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Research on brain–computer interfaces (BCIs) is expanding in
hopes of improving quality of life for people who are paralysed
or severely motor impaired [1].  In BCI research, brain signals are
analysed in order to decode the subject’s mental state and map  it
onto some external action (e.g., controlling a computer cursor or
a wheelchair). Over the last decade, different types of brain sig-
nal have been studied in order to derive useful information about
the subject’s mental state. Most BCI systems use electroencephalo-
grams (EEGs) because they have been thoroughly studied in neural
engineering [2,3]. Most notably, major success has been achieved
with dependent BCI paradigms that use the modulation of the
steady-state visual evoked potential, which is a brain response to
external flickering lights or patterns [4].

Recent advances in neuroimaging have demonstrated a new
way of accessing the brain’s functional state by using functional
near infrared spectroscopy (fNIRS). This emerging sensing modality
is non-invasive, safe, and portable; it is used to monitor physiolog-
ical changes that occur in the human brain during cognitive tasks
[5]. fNIRS presents information about cortical haemodynamics
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and oxygenation status during functional activity through three
parameters: the concentrations of oxyhaemoglobin (Oxy-Hb), de-
oxyhaemoglobin (deOxy-Hb), and total haemoglobin (total-Hb).
The ratio of these concentrations is determined by a combination of
oxygen consumption, supply of oxygenated arterial blood flow, and
drainage of de-oxygenated venous blood [6].  The concentrations
may  provide important information regarding subjects’ cognitive
states that can be decoded and verified for use in a BCI [7,8].

fNIRS has already been used in several studies to investigate
haemodynamics and oxygenation for a BCI. For instance, Sitaram
et al. classified brain haemodynamics arising from right- and
left-hand motor imagery from five subjects using support vec-
tor machines (SVMs) and hidden Markov models [9].  They also
described future plans for a possible word speller interface in which
the user employs left- or right-hand imagery to move the cursor to
the left or right, respectively, to select a letter. Utsugi et al. demon-
strated mental-task-based real-time control of a toy train, which
was  achieved only by performing complex mental arithmetic tasks
[10]. In addition, Sassaroli et al. demonstrated that a simple k-
means algorithm successfully classified the brain haemodynamics
associated with five mental tasks [11]. Furthermore, Truong and
Masahiro studied a neural network approach to the classification
of brain fNIRS results using wavelet input features [12] and showed
that their wavelet-based approach is suitable for selecting mental
task relevant input features for a neural network classifier. One
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interesting research by Tai and Chau shows the feasibility of fNIRS-
BCI framework as a rehabilitation system for patients with motor
impairments [13].

The current status of fNIRS technology may not be optimal
for real-time BCI because of the slow inherent latency of the
brain haemodynamics response, which occurs over 4–8 s [14,15].
This is in contrast to EEG, which measures brain activity over
a few milliseconds. A few studies focused on measuring fast
haemodynamic response, which could provide nearly instanta-
neous measurements, but this has not been extensively explored
yet [16]. We  consider that fNIRS-BCI systems have potential for
a neuro-rehabilitation of motor functions of post-stroke patients
that involve slow operations to induce spontaneous cortical plas-
ticity or neurofeedback paradigms for a treatment of attention
deficit hyperactivity disorder. However, fNIRS-BCI may  not be
proper at this stage for a direct translation of mental intent to sup-
port voluntary movements or locomotion which requires fast and
instantaneous feedback.

In this study, we report our preliminary experimental results
in the analysis and classification of haemodynamic signals for
BCI. First, we explain the procedure for fNIRS signal acquisition
from nine participants who performed four mental tasks. Next,
we present a wavelet-based pre-processing technique for fea-
ture estimation. We  consider two aspects of neural signal quality:
extraction of the true mental-task-relevant signal and elimination
of interference from noise. True neural signals are detected in two
steps; we first decompose the signal using four candidate wavelet
functions and then perform soft thresholding on the scale of each
wavelet to eliminate various types of noise in the fNIRS signals.
Using the extracted wavelet coefficients, we construct important
signal features for further classification. Finally, we  study and
compare the effects of three classifiers in order to maximize the
accuracy of mental task recognition. These classifiers are a back-
propagation neural network (BPNN), linear discriminant analysis
(LDA), and an SVM. This procedure enables us to determine a suit-
able wavelet function, describe the effects of soft thresholding on
the classification accuracy, and identify the optimal classifier for
a particular task. Fig. 1 shows a flowchart describing the process;
details on each step are presented in the following sections.

2. Materials and methods

2.1. fNIRS data acquisition

Fig. 2 illustrates the data acquisition procedure. We  used a multi-
channel optical brain-function imaging system for data acquisition
(FOIRE-3000, Shimadzu Co. Ltd., Kyoto, Japan). The system uses
different laser diodes emitting different wavelengths of 780 nm,
805 nm,  and 830 nm to calculate the proportional cerebral oxygena-
tions of the Oxy-Hb and deOxy-Hb contents of the brain surface. We
used 19 channels to measure the concentration levels of Oxy-Hb,
deOxy-Hb, and total-Hb in the frontal cortex of nine right-handed
subjects (mean age 32.1, age range 25–37, eight males). A cap with
optical fibre probes was placed on the pre-frontal cortex accord-
ing to the 10–20 international electrode placement system [17].
Fig. 2(a) shows the locations of the transmitter laser diodes and
receiver optodes on the brains surface. The red-circled numbers
represent the transmitters, and the blue-circled numbers represent
the receivers; the white squares show the locations of the 19 chan-
nels. The distance between the transmitter and receiver optodes is
equal to 30 mm (see Fig. 2(a)). The acquired signals were digitized
using a 16-bit A/D converter with a sampling rate of 10 Hz.

Before the measurements began, participants were asked to sit
relaxed and to rest in order to stabilize the blood flow in all chan-
nels. We  divided the data recording into five sessions, each of which

consisted of three trials of a given mental task. Each trial lasted 35 s,
which was divided into three time segments: pre-task rest, task,
and post-task rest [Fig. 2(b)].

The participants performed the following four mental tasks:

Baseline task: subjects were asked to relax and think of nothing in
particular. This task was used as a control and a baseline
measure of the fNIRS signals.

Object rotation task: a variety of objects were presented to the par-
ticipants for imaginary rotation. We  also provided tasks
in the form of puzzles so that their brain activity could be
easily assessed.

Multiplication task: subjects were asked to multiply two random
numbers, for example, 35 × 72, without making any phys-
ical movements. This task was  designed such that it was
difficult but could be accomplished within the given time
segment. The subjects verified at the end of the task
whether they arrived at the solution.

Letter padding task: in this task the operator shows a randomly
selected letter such as a [ei], and the participant would
have to say words starting with the same character (e.g.,
apple and ant) within the given time.

All tasks were presented on flash cards by the operator. We  did
not use a computer screen to present the mental tasks in order to
avoid any light interference in the fNIRS signals.

In this study, we focused on the analysis of Oxy-Hb concentra-
tion levels because they have been found to consistently reflect
neural activities. A study reported that an increase in nervous
activity results in an increase in the local oxygen consumption.
As a result, oxygenated haemoglobin levels decrease, and those
of deoxygenated haemoglobin increase. Further, the blood ves-
sel activity is enhanced in order to supply fresh blood. Thus,
the blood flow volume increases locally. Therefore, Oxy-Hb lev-
els increase, and deOxy-Hb levels decrease. These processes are
reactions that occur within a few seconds [18]. The blood-oxygen-
level dependence (BOLD) signal is an index of the blood stream
change appearing in functional magnetic resonance imaging mea-
surements. Oxy-Hb reportedly has a strong correlation with the
BOLD signal [19]. To evaluate the functional brain state, we  can
judge brain activation using primarily the increase in Oxy-Hb. The
deOxy-Hb concentration is reportedly weak and difficult to detect
in real-time BCI [20].

3. Pre-processing

fNIRS transients exhibit slowly and smoothly varying waves at
low frequencies. It is important to analyse both the spatial and
temporal characteristics of the signal. In other words, we  need to
extract only true neural features from the low- and high-frequency
components of the noisy signal. For this purpose, we apply contin-
uous wavelet transforms (CWTs) and a soft thresholding rule. The
ability of a CWT  to localize the time-frequency characteristics of
non-stationary signals enables us to capture important fNIRS sig-
nal features. Furthermore, we  employ a soft thresholding rule to
reduce noise interference in the signals. We  present the following
strategy for noise reduction and feature selection:

• Perform dyadic CWT  with four different mother wavelets
• Separate a neural signal from noise at each scale by soft thresh-

olding
• Combine decisions from all scales
• Construct signal features for classification
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