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a b s t r a c t

The purpose of this paper is to present the optimal number of windows and window lengths using
multiple window spectrogram for estimation of non-stationary processes with shorter or longer duration.
Such processes could start in the EEG as a result of a stimuli, e.g., steady-state visual evoked potentials
(SSVEP). In many applications, the Welch method is used with standard set-ups for window lengths
and number of averaged spectra/spectrograms. This paper optimizes the window lengths and number of
windows of the Welch method and other more recent, socalled, multiple window or multitaper methods
and compares the mean squared errors of these methods. Approximative formulas for the choice of
optimal number of windows and window lengths are also given. Examples of spectrogram estimation of
SSVEP are shown.

© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Estimation and detection of frequency changes of shorter or
longer duration in the EEG, connected to stimuli, are often of great
interest. For a repetitive periodic visual stimulus a steady-state
visual evoked potential (SSVEP) arises. The estimation and detec-
tion of SSVEP is of interest in many applications, e.g., in working
memory tasks [1–3], brain–computer interfaces [4–6], and others.
Different approaches to estimate and model the SSVEP have been
taken over the years, e.g., [5,7–9]. However, many of these models
are too deterministic to be reliable and recent research shows that
the visual evoked potentials are a combination of additive events
and phase changes of the EEG, [9,10]. Therefore a simple stochastic
model is adopted in this paper, where a few parameters determine
the behavior of the event.

Usually a spectrum or spectrogram approach based on a single
window is used for estimation of evoked potentials. Sometimes it
is also argued that no window at all should be used [11]. This is
usually based on that SSVEP has a deterministic behavior and the
periodogram (without window) has also been shown to be opti-
mal for detection of a sinusoid frequency disturbed by noise, [12].
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However, for stochastic processes the periodogram has a large vari-
ance and if we assume the SSVEP to be a stochastic process the
periodogram is not necessarily the optimal solution.

The large variance is reduced using averaging of uncorrelated
spectra [13], where the uncorrelated spectra come from different
non-overlapping or partly overlapping data sequences. The method
is mostly called the Welch method or WOSA (weighted overlapped
segment averaging) and a common data overlap is 50% which has
been shown to be appropriate from resolution and variance aspects.
Parametric spectra, based on AR and ARMA models, have been used
frequently but are well known to be unreliable with spurious peaks
and other estimation errors.

More recently, the use of socalled multiple windows has been
proposed. The concept of multiple windows was introduced by
Thomson [14], and the method has been shown to give a better
result than the WOSA method in terms of leakage, resolution and
variance [15]. For multiple windows, the properties that give uncor-
related spectra come from the windows and not from data. Multiple
windows make use of all data samples for all windows and are
totally overlapping and thereby they use more of the information
in data than, e.g., the WOSA method. The optimal bias and variance
reduction from multiple windows can be achieved utilizing appro-
priate windows for the properties of data. With certain constraints
on data, e.g., frequency local white spectrum for the Thomson
method [14], the window shapes are designed to give uncorrelated
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subspectra. For a varying spectrum, e.g., a large dynamic spectrum
with peaks and notches, however, the performance of the Thomson
method degrades due to cross-correlation between spectra [16].
The minimum bias multiple windows and the sinusoid windows
in [17] and the peak matched multiple windows (PM MW) [18,19],
have better properties for frequency-varying spectra.

Multiple window spectrograms have been proposed and evalu-
ated for many different application areas and also for the estimation
of EEG, e.g., Hermite functions and the Thomson multiple windows
in [20], where it was shown that the time–frequency localization
is higher for the Hermite functions compared to the Thomson win-
dows. The Thomson multiple windows are also applied in [21] for
characterization of brain oscillations where it was noted that win-
dow lengths and number of windows were important parameters
for the characterization. The PM MW have also been evaluated
and compared to WOSA and the Thomson windows for estimation
of EEG-spectra in [22]. Events of different kinds that arise in the
EEG, often connected to some stimulus, call for robust estimation
methods that are adapted to the events. The events have typically
a non-stationary behavior and the multiple windows need to be
optimal for such events.

Time–frequency analysis, for time and frequency varying spectra,
include different approaches, e.g., the short time Fourier trans-
form (STFT) or spectrogram, the Wigner-Ville distribution (WVD)
as well as the wavelet transform. Recently, multiple windows are
introduced for non-stationary stochastic processes. The STFT is
appropriate in many cases where resolution is important and can
be seen as a special case of the multiple window techniques with
just one window. The WVD is well known to have drawbacks, as
the cross-terms usually destroy the information for stochastic pro-
cesses. For the estimation of the time- and frequency properties
of the SSVEP an approach using, e.g., wavelets is not that appro-
priate, contrary to the estimation of shorter event-related signals
≈ 1 s. Other methods are proposed, e.g., the chirplet transform in
[23] and multiple windows that are optimal for a class of locally sta-
tionary processes (LSP MW), in [24]. This class of processes spans a
wide range different time- and frequency bandwidths.

The LSP MW are very appropriate for robust estimation of non-
stationary processes as just one parameter determines the whole
set of multiple windows and weighting factors and the set of multi-
ple windows can be well approximated as a set of Hermite functions
which is an advantage from computational aspects. Above this, the
same set of Hermite functions can be used for all frequency band-
widths, meaning that a number of windowed spectrograms can be
computed and stored. For the final estimate, the windowed spec-
trograms are weighted together according to an optimal parameter
set. Thereby, if there are inaccuracies in the modeling of data, a
wider set of optimal estimators in the class of locally stationary
processes are easily evaluated. This flexibility also makes the esti-
mator to actually approximately vary from a STFT-estimator (one
spectrogram) to a WVD-estimator (averaging of a large number
with alternating sign of the weights). The LSP MW are applied for
estimation of events in the EEG in [25].

In this paper, the mean squared error optimal window lengths
and number of windows are computed and compared for the
WOSA, the PM MW, the Hermite functions and the LSP MW, in mul-
tiple window spectrograms of an event, e.g., a SSVEP. In Section 2,
some simplified expressions for the mean squared error of multi-
ple window spectrogram estimators are suggested. Based on these
expressions, closed form formulas for the approximative window
lengths and number of windows are given. In Section 3, the multi-
ple window spectrogram and the different methods are defined and
Section 4 presents the theoretical formulas which are used in the
evaluation. In Section 5 some real data examples are given and some
general conclusions for the use of multiple windows in spectrogram
estimation of SSVEP are presented in Section 6.

2. Estimation of approximate window lengths and number
of windows for multiple window spectrograms

To accurately estimate the power distribution in frequency of a
real-valued sequence of a stationary process {x(m), m = 0, . . . , N −
1} with spectrum S(f ), the mean squared error (MSE), including
variance and squared bias measures, could be used, i.e.,

E[(Ŝ(f ) − S(f ))
2
] = V [Ŝ(f )] + B2(f ), (1)

where the variance is defined as

V [Ŝ(f )] = E[(Ŝ(f ))
2
] − E2[Ŝ(f )],

and the squared bias as

B2(f ) = (E[Ŝ(f )] − S(f ))
2
.

For the windowed periodogram,

Ŝ(f ) = 1
N

|
N−1∑
m=0

x(m)h(m)e−j2�fm|2, (2)

where {h(m), m = 0, . . . , N − 1}, is a window function, the variance
is usually approximated as

V [Ŝ(f )] ≈ S2(f ), 0 < f < 0.5, (3)

and the expected value is

E[Ŝ(f )] =
∫ 1/2

−1/2

S(u)KN(f − u)du, (4)

where for the rectangle window, {h(m) = 1, m = 0, . . . , N − 1},

KN(f ) = sin2(N�f )

N sin2(�f )
,

is known in literature as Fejér’s kernel. The half-value frequency
bandwidth, i.e., where KN(Bw/2) = 1/2 if KN(0) = 1, is approxi-
mately Bw = 1/N, which is said to be the spectral resolution limit.
The half-value time bandwidth of the rectangle window of length
N is Tw = N but for the Hanning window we instead find Tw = N/2
and Bw = 2/N. Conclusively, a time–frequency bandwidth is found
as TwBw = 1 [26, p. 42].

For a multiple window estimator based on, e.g., the Thomson
multiple windows, {hi(m), m = 0, . . . , N − 1}, i = 1 . . . I,

Ŝ(f ) = 1
I

I∑
i=1

|
N−1∑
m=0

x(m)hi(m)e−j2�fm|2, (5)

the spectral resolution is approximately equal to Bw = I/N, [14],
and as these windows vary considerably in time, we use the time-
resolution of the rectangle window above, Tw = N, giving TwBw = I.
The variance is, for a smooth spectrum, approximately,

V [Ŝ(f )] ≈ 1
I

S2(f ), 0 < f < 0.5. (6)

This formula is approximately valid also for, e.g., the WOSA with
50% overlap between the windows.

In this paper, a simple AR(2)-model is proposed for the studied
process. The damping factor �0 is varied to simulate different types
of processes, see Fig. 1, where two different realizations are shown
in each plot for different �0 and sequence length T in seconds. The
frequency local shape of the AR(2)-spectrum can be approximated
with a similar AR(1)-model with spectrum,

S(f ) = (1 − �0)2

1 + �2
0 − 2�0 cos(2�f )

,
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