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a b s t r a c t

Bone fluid flow and its induced effects on the bone cells are important players in triggering and signalling
bone formation and bone remodelling. This study aims to numerically investigate the behaviour of inter-
stitial fluid flows in cortical bone under axial cyclic harmonic loads that mimics in vivo bone behaviour
during daily activities like walking. Here, bone tissue is modelled as a fluid-saturated anisotropic poroe-
lastic medium which consists of a periodic group of osteons. By using a frequency-domain finite element
analysis, the fluid velocity field is quantified for various loading conditions and bone matrix parameters.

© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Cortical tissue is the dense part of bone. As a living entity, this
material is able to maintain and adapt its structure to external
physical stimuli [11]. The seat of bone remodelling mechanisms
corresponds to cylindrical structural elements called osteons.
Each osteon is surrounded by a thin layer (cement line) and is
centered on Haversian canal which runs primarily in the bone
longitudinal axis. The Haversian canals contain the vasculature,
the nerves and interstitial fluid. There are also Volkmann canals
which are similar to Haversian canals except that they run along
the transverse direction of the bone. At a smaller scale, other
extravascular pores exist in the solid matrix of the bone forming
the lacuno-canalicular system. This porous network irrigates the
mechano-sensitive osteocytes which are believed to play an impor-
tant role in bone adaptation as stated in recent experimental studies
[7,18,16,25].

The study of the macroscopic mechanical behaviour of bone is
useful in order to describe the hydraulic response in the vicinity of
cells which is a subject of great interest since it could help to better
understand bone remodelling [21,17,9,8]. By assuming an imper-
meable cement line, our group proposed several studies of the
poroelastic response of an isolated osteon subjected to mechanical
loading [14,12,15,13]. However in reality, micropores of osteonal
tissue may cross cement lines [6] and thus the cement line may
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not be quite impermeable. Although the question about values of
the cement line’s permeability is still opened, such a pervious prop-
erty of the cement line is expected to modify the hydro-mechanical
behaviour of cortical tissues.

Hence, the main purpose of this study is to extend our previous
studies to take into account the possibly existing flows through
the cement coating surfaces. We are also interested in taking into
account the interaction between the considered osteon and the
environment around it. For this purpose, this study proposes to
describe the cortical tissues by several secondary osteons, each of
which is coated by a cement line, embedded in a matrix made of
old osteonal tissues. An idealized model is carried out to mimic the
hydro-mechanical behaviour of this system and analyze the influ-
ence of loading parameters, cement line permeability and geometry
characteristics. Using the model, it is proposed to test the hypoth-
esis that the interstitial fluid flow is independent of fluid flow
but dependent on rate of strain. Further it is proposed to test the
hypothesis that cement line permeability does not contribute to
interstitial fluid field.

This paper is organized as follows. After this introduction on the
rationale of the behaviour of interstitial fluid flows in cortical bone
under axial cyclic harmonic loads, Section 2 introduces the model
considering the bone matrix as a periodic array of osteons. Based on
Biot’s poroelastic theory applied to three-dimensional anisotropic
media, the governing equations are presented. Next, we propose an
equivalent two-dimensional system by assuming a homogeneous
deformation in the longitudinal direction and focusing on a domain
far from transverse vasculature. In Section 3, we develop the prob-
lem in the frequency domain and derive the corresponding weak
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Fig. 1. Cortical tissue: (A) three-dimensional representation; (B) two-dimensional projection; (C) representative elementary volume.

formulations. Finally, Section 4 provides some numerical results of
the fluid velocity, considering different geometrical and textural
properties of cortical tissue under various loading conditions. The
interest of these results for bone remodelling, mechanotransduc-
tion and cell stimulation is also discussed.

2. Description of the configuration and formulation of the
problem

2.1. Geometrical configuration

In the osteonal bone matrix, Haversian canals run longitudinally
through the bone cortex and are transversely inter-connected by
Volkmann canals. Each osteon is developed concentrically around
one Haversian canal and presents a cylinder-like form. For sim-
plification purposes, the osteonal zone that is considered here is
assumed to be far enough from transverse Volkmann canals, so
that the influence of these canals can be neglected. Without this
assumption, a large complex 3D model would have to be done.

We consider a representative matrix of osteons containing
Haversian canals (see Fig. 1(A)). Let R(O; e1, e2, e3) be the Carte-
sian frame of reference where O is the origin of the space equipped
with an orthonormal basis (e1, e2, e3). The osteons, which all run
in the vertical direction e3, are modelled as thick-walled hollow
cylinders. They are assumed to be identical and parallel. Moreover,
they are arranged periodically in the horizontal plane (e1, e2) (see
Fig. 1(B)). Each osteon is coated by a thin layer called the cement
line. The tissue found outside of the cement lines, i.e. the tissue that
fills the space between the osteons, is the osteonal matrix formed
by the remnants of old osteons.

The position x of the particle of the medium is specified through
the coordinates (x1, x2, x3) with respect to R. The time is denoted by
t. Moreover, the Einstein summation convention, which stipulates
that repeated indices are implicitly summed over, is used.

In what follows, superscripts referring to different material
components of the cortical medium are introduced: Haversian
canal (h), osteon (o), cement line (c) and interstitial tissues (i).

2.2. Three-dimensional governing poroelastic equations

The bone tissue materials (osteons, cement lines and interstitial
matrix) are considered as saturated anisotropic poroelastic media.
Neglecting body forces, the governing poroelastic equations for
anisotropic material in the low frequency range are given by [1,3]:

�ü − div � = 0, (1)

1
M

ṗ − div (k grad p) + � : �̇ = 0, (2)

where � = ��f + (1 − �)�s is the mixture density which is defined
from the porosity � and the densities �f and �s of the fluid and solid
phases, respectively; u and � are the displacement vector and the
strain tensor of the solid skeleton, respectively; � is the total stress
tensor; p is the fluid pressure in saturated pores; k is the anisotropic
permeability tensor; � is the Biot tensor and M is the Biot modu-
lus. The operators div and grad are respectively the divergence and
gradient. Differentiation with respect to time t is denoted by super-
posed dot and the symbol ‘:’ between tensors of any order denotes
their contraction.

Note that the permeability k is the textural parameter allow-
ing to quantify the ability of a porous material to transmit fluids
through the Darcy law:

v = −k grad p, (3)

where v is the filtration velocity vector defined by v = �(u̇f − u̇)
where u̇f is the velocity of the interstitial fluid. The tensor k may
be evaluated by k = �/� where � is the intrinsic permeability and
� the pore fluid dynamic viscosity.

The stress tensor � is linearly related to the skeleton strain
� of the porous solid and to the fluid pressure p. Therefore, the
constitutive relationship is given by:

� = C : � − �p, (4)

where C is the stiffness tensor of the drained material.
For an orthotropic material, C is defined by nine independent

parameters and � is a diagonal tensor defined by three independent
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