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a b s t r a c t

In this paper it is studied how three methods of quantifying structural anisotropy are related. Mean
intercept length (MIL) method has been designed for the analysis of binary images. Autocorrelation
function and the covariance matrix of the gray-level intensity gradient (GST method) are approaches
designed for the analysis of gray-level data. It is shown here that the autocorrelation function and the
MIL methods are not related in a general case. In contrast, an analytical proof is provided to show that
MIL and GST methods are strictly equivalent. The standard definition of MIL is expressed in terms of a
gradient field. Next it is shown that eigenvectors of the MIL fabric tensor are also eigenvectors of the GST
fabric tensor and eigenvalues of the MIL fabric tensor can be determined if the eigenvectors of the GST
fabric tensor are known. It follows from the study that the application of MIL in the assessing quality of
trabecular bone can be replaced in all cases by the application of the GST method, which is more general
(as defined for gray-level data), easier to implement and less computationally expensive.

© 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Human bone is generally classified into either cortical (com-
pact) or trabecular (cancellous or spongy) bone. All bones have an
exterior layer (cortex) composed of cortical bone. In some parts of
the interior of bones bony tissue may be arranged in a network
of intersecting plates and rods called trabeculae. The intertrabec-
ular space is filled with blood vessels and marrow. Trabecular
bone is a highly porous structure with porosity ranging from 40%
to even 95%. One of the most striking properties of trabecular
bone is its structural anisotropy. Trabeculae are not aligned in ran-
dom directions. Rather, in a representative volume element, they
are averagely aligned parallel with the lines of major compres-
sive or tensile stresses. The mechanical properties of trabecular
bone are also anisotropic, so the first requirement for a formu-
lation of a relation between mechanics and architecture must be
an ability to quantify structural anisotropy. To quantify structural
anisotropy of trabecular bone structure, Cowin [1] introduced the
term “fabric tensor” and proposed equations relating fabric ten-
sor and density to the elastic constants. Based on Cowin’s ideas,
it has been shown [2–4] that variations of structural anisotropy
and bone volume fraction, derived from ultra high-resolution �CT
images, explain at least 90% of the variation of the apparent elas-
tic constants. These approaches have been however substantially
based on binary 3D data and, consequently, methods of quantifying
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structural anisotropy applicable to binary images only have been
used (primarily methods of mean intercept length (MIL) [5], volume
orientation (VO) [6] or star volume distribution (SVD) [7]).

Clinical examinations of trabecular bone deliver low-resolution
gray-level images, which cannot be easily converted to binary data
without introducing serious segmentation artifacts. In fact, it is a
well recognized problem that measures of structural anisotropy
derived from low-resolution binary images, acquired under in vivo
conditions do not correlate well with measures derived from high-
resolution data [8,9] and are not as highly predictive of mechanical
properties. On the other hand methods of quantifying fabric from
gray-level data do exist [10–13]. Gray-level intensity gradient-
based fabric tensor has been successfully used [10] to explain
variation of Young’s modulus of entire vertebral bodies.

The present study is inspired by the experimental findings
reported in Ref. [10]. So far, except in Ref. [10], only binary-image-
based methods of quantifying structural anisotropy were used to
explain mechanical competence of trabecular bone. The success-
ful explanation of the variation of the Young’s modulus, using
a gray-level method of estimating structural anisotropy, when
combined with the equally successful application of binary-image-
based methods for high-resolution data suggests, that there may
exist some fundamental correspondence between binary and gray-
level methods. In the present study the possibility of the existence
of such a correspondence is tested.

Because of its widespread use, MIL method was selected in
the present study as the reference approach (MIL is implemented
also in commercially available analyzers of medical images e.g.
SkyscanTM CT-analyzer software, SkyScan, Belgium). The collected
experimental results [10–13] suggest that one should consider
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autocorrelation and intensity gradient-based methods as poten-
tially related to MIL. In the present study the equivalence of these
methods is tested, using primarily analytical tools. It is shown that
autocorrelation and MIL methods are not related in a general case.
In contrast, an analytical proof is provided in 2D that the MIL and
gradient of gray-level intensity fabric tensors are strictly equiva-
lent. Strong numerical evidence suggests that the same is true in
3D. Because computing fabric tensor from the gray-level gradient is
both simpler in implementation and less computationally expen-
sive, it follows from the presented results that MIL method can be
replaced with gained performance by the equivalent gradient of the
gray-level intensity fabric tensor.

2. Problem formulation

Formally, structural anisotropy (fabric) is a second rank, positive
definite tensor describing the anisotropy of the mass distribution
within a porous material. There are a few approaches, referenced
below, to make this definition more specific. The most straight-
forward approach requires defining a vector field, which specifies
locally the structure orientation. This approach is discussed in the
following.

Let V be a unit vector describing the mean orientation of trabec-
ulae within a trabecular structure and g(x,y,z) be a (not necessarily
unit) vector describing local orientation of trabeculae. The error
vector e(x,y,z) of g with respect to V is equal to e(x,y,z) = g − (gT · V)V.
The total error E is equal to [14]:

E =
∫

˝

|e|2 d� (1)

where the integration is performed over some region of interest
˝. The orientation vector V can be found by minimizing E with
respect to V. Because V was constrained to be a unit vector, one has
to minimize the following quantity:

E′ =
∫

˝

|e|2 d� + �(|V |2 − 1) (2)

where � is the Lagrange multiplier. Recalling that |V|2 = VT · V, Eq.
(2) can be rewritten in the following form:

E′ =
∫

˝

(gT · g − (gT · V )
2
(1 − VT · V )

− (gT · V )(VT · g)) d� + �(VT · V − 1) (3)

The first term in the integral it is a constant, the second term is zero
by assumption (the length of V is equal to 1). Hence one has:

E′ = const −
∫

˝

(gT · V )(VT · g) d� + �(VT · V − 1)

= const −
∑

i,j

∫
˝

gigjViVj d� + �
∑

i

(ViVi − 1) (4)

Differentiation of E′ with respect to the mth component Vm of V
gives the following equation for V:

∂E′

∂Vm
= 0 = −

∫
˝

gmgjVj dω + �Vm (5)

The integrals �i,j =
∫

˝
gigj dω are the components of the tensor

� of structural anisotropy, related to the vector field g. The mean
orientation vector V is the solution of the eigen equation �V = �V.

One of the typical choices of the local orientation vector field
is performed on the base of the volume orientation (VO) method
[6] (Fig. 1). The method works for binary images of binary struc-
tures. A local volume orientation is defined at any point within a

Fig. 1. Measurement of the volume orientation in a sample point (gray disk).

trabecula as the orientation of the longest intercept through that
point. For every point within the analyzed structure a single unit
vector describing the local orientation is thus obtained. Then the
components of this vector are inserted into the integrals �i,j (or a
summations in a discrete case), defining the VO fabric tensor.

Star length distribution [15] (SLD), like the volume orientation,
describes the typical distribution of trabecular bone around a typ-
ical point within a trabecula. To calculate the SLD fabric tensor,
lines along specified directions uniformly distributed within a unit
sphere and emerging from a given seed point n are traced until an
interception with the bone-marrow interface is found. The length
ln of the intercept line from the seed point n to the boundary is
recorder for every direction. As the result of the measurements per-
formed at a single point a set of vectors with varying lengths and
orientations is obtained. All these vectors are inserted into integra-
tions (or summations) defining the SLD fabric tensor. Star volume
distribution [7] (SVD) is a modification of the SLD method—the vec-
tors, which are inserted into integration, defining the SVD fabric
tensor are weighted with l3n , but not with ln, like for the SLD method.

Another classical approach to characterizing structural
anisotropy is based on the mean intercept length (MIL) method
[5]. The principle of the MIL measurement is to count the number
of intersections between a family of equidistant parallel lines and
the bone/marrow interface as the function of the 3D orientation �
of the family of lines (see Fig. 2 for a 2D example). Decreasing the
inter-line distance and increasing the number of orientation for
which the number of intersections is counted improves precision
of MIL estimation at the cost of increased computational burden.
There are however no rules of thumb which specify how these
parameters should be set. Ideally, the inter-line distance should be

Fig. 2. The principles of the MIL measurement: (a) a linear grid imposed onto the
structure and (b) MIL is a function of orientation �.
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