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a b s t r a c t

The mechanical integrity of the soft tissue structures supporting the fetus may play a role

in maintaining a healthy pregnancy and triggering the onset of labor. Currently, the level of

mechanical loading on the uterus, cervix, and fetal membranes during pregnancy is

unknown, and it is hypothesized that the over-stretch of these tissues contributes to the

premature onset of contractility, tissue remodeling, and membrane rupture, leading to

preterm birth. The purpose of this review article is to introduce and discuss engineering

analysis tools to evaluate and predict the mechanical loads on the uterus, cervix, and fetal

membranes. Here we will explore the potential of using computational biomechanics and

finite element analysis to study the causes of preterm birth and to develop a diagnostic tool

that can predict gestational outcome. We will define engineering terms and identify the

potential engineering variables that could be used to signal an abnormal pregnancy. We

will discuss the translational ability of computational models for the better management of

clinical patients. We will also discuss the process of model validation and the limitations of

these models. We will explore how we can borrow from parallel engineering fields to push

the boundary of patient care so that we can work toward eliminating preterm birth.

& 2017 Elsevier Inc. All rights reserved.

Introduction

Preterm birth (PTB) is defined as a live birth that occurs before
37 weeks’ gestation.1 It is the leading cause of death in children
under the age of five, reaching 1.1 million annually.2 Each year
there are an estimated 500,000 cases of preterm birth in the US.1

As many as 95% of cases are intractable to current therapies,3

suggesting the need for continued investigations and medical
discoveries. The average cost of a preterm newborn’s first year
of life is over 10 times that of a normal term baby’s ($49,000 vs.
$4,500).4 Furthermore, PTB often leads to lifelong health

complications such as cerebral palsy, asthma, and numerous
learning disabilities, and has an estimated societal cost of at
least $26 billion in the United States each year.5

Throughout gestation, the fetus is supported and protected
by biologically active soft tissue structures. These structures
send mechanical signals that can trigger tissue remodeling
and contractility through mechanosensitive cells (e.g.,
mechanotransduction). The mechanical integrity of the ute-
rus, cervix, and fetal membranes are critical for a successful
pregnancy, where the loss of structural integrity of these
tissues is believed to contribute to spontaneous PTB. For
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example, in the case of cervical insufficiency (CI) the cervix
dilates and shortens painlessly in the absence of uterine
contractions.6 CI is hypothesized to be caused by premature
cervical remodeling and softening of the tissue. Preterm labor
is believed to be caused, in part, by uterine overdistention, as
evidenced by the higher rate of preterm labor for multiple
gestations or excessive amniotic fluid.7,8 A recent study
investigated uterine overdistention in nonhuman primates
by inflating intra-amniotic balloons. Results showed uterine
overdistention caused preterm labor triggering a cascade of
cytokines and prostaglandins associated with inflammation.9

Premature preterm rupture of membranes (PPROM) occurs
due to damage of the collagen in the chorioamnion, causing a
mechanical tear in the membrane. Clinical studies show
excessive collagen degradation in chorioamnion and amni-
otic fluid samples that have experienced PPROM.10 The
hypothesized causes of PPROM include an insufficient cervix,
hydramnios, trauma, and amniotic fluid infection.11

Characterizing reproductive tissues in real time and access-
ing organs to measure anatomical and tissue properties
throughout gestation is challenging. Hence, a driving engi-
neering motivation is to use biomechanical models of preg-
nancy to understand the mechanical functions and
dysfunctions of the tissues during pregnancy. The purpose
of this review article is to introduce and discuss engineering
analysis tools to evaluate and predict the mechanical loads
on the uterus, cervix, and fetal membranes. Medical imaging
such as magnetic resonance imaging (MRI) and ultrasound
are minimally invasive, yet provide thorough anatomies of a
patient’s anatomy. These anatomies can be implemented in
biomechanical models to simulate gestational scenarios
without providing any harm to pregnant patients. Here we
will explore the potential of using computational biome-
chanics and finite element analysis to study the causes of
preterm birth and to develop a diagnostic tool that can
predict gestational outcome.

Engineering definitions

A biomechanical model quantitatively represents the geom-
etry and mechanical properties for a single tissue, organ, or a
system of load-bearing tissues and organs. The model aims to
solve for the amount of tissue stress and stretch as the result
of external mechanical loading. Mechanical models depend
on strict definitions of force, deformation, stress, strain, and
stretch. We briefly explain them here. The term stress
represents the amount of force carried within the tissue
normalized by its geometry. It is a three-dimensional term,
where the amount of stress will vary depending on the
direction. Simply put, stress ðσÞ is defined as a force ðFÞ per
unit area ðAÞ, σ ¼ F=A, with units of pressure N/m2 or Pa in
metric and lb/in2 or psi in the English unit system. Due to its
direction-dependence, there are multiple types of stress:
normal stress occurs when the force vector is perpendicular
to the surface, and shear stress occurs when the force vector
is parallel to the surface. If the force vector is somewhere in
between perpendicular and parallel to the surface, both stress
components are present. Strain ðεÞ is a measure of deforma-
tion of the tissue due to stress, and it is also normalized by

geometry. Because stress is direction-dependent, strain is
also direction-dependent. Simply put, it can be expressed as
the change in tissue length ðΔlÞ over the original length ðl0Þ,
ε¼Δl=l0. Strain is often reported as a percentage. Stretch is
similar to strain and is typically used for materials that
undergo large deformations, such as soft biological tissues.
Stretch ðλÞ is the ratio between the current length at a given
applied force ðlÞ and the original length ðl0Þ of the material,
λ¼ l=l0. It is reported as a unitless ratio and not a percentage.
In addition to accurately describe the shape and size, a

biomechanical model also requires the mechanical properties
of the tissues in the system. Tissue mechanical properties are
the quantitative values that relate the amount of tissue stress
σ with the amount of strain ε (or stretch λ). This mathematical
relationship is called a material model, and the equation
parameters are the material properties of the tissue. Material
properties are found by isolating the tissue and conducting a
series of mechanical tests. The most basic, and often most
informative, mechanical test is a uniaxial tensile test. In this
test, a uniform piece of tissue is gripped within a material
tester by each of its end. The material tester displaces the
grips by prescribed displacement values Δl, and the force F is
measured as the tissue is pulled in tension. The material
tester records force F as a function of grip displacement Δl,
and stress σ and strain σ are then derived from these values
and are normalized by the cross-sectional area A of the
tissue.
The shape and magnitude of the experimental stress σ

versus strain ε curve for a given material is the material
behavior of the tissue. The mathematical equation describing
the material behavior is the material model, where model
parameters are tissue material properties (or tissue mechanical
properties). Material properties must be strictly defined
within each modeling context because the terms such as
stiffness and strength have specific meanings in the field of
mechanics. The simplest of material behavior is linear elastic,
where there is a linear relationship between stress σ versus
strain ε This type of material is described by two material
parameters: the Young’s modulus E and the Poisson’s ratio ν.
The Young’s modulus E of a material is often referred to as
the stiffness of a material, and is the slope of the stress σ

versus strain ε curve. Material compliance is the inverse of
material stiffness 1=E, often thought of as the material’s
flexibility. A material that deforms easily is said to be
compliant, while a material that resists deformation is said
to be stiff. Also identifiable on a stress–strain curve is the
strength of a material. Yield strength is the point at which the
stress–strain curve begins to deviate from a straight line, and
represents the lowest stress that produces permanent defor-
mation of a material. Poisson’s ratio of a material ðνÞ is the
ratio of lateral strain to axial strain when a material is in
tension: ν¼−ðεyy=εxxÞ: In other words, it is the amount of
transverse extension divided by the amount of axial com-
pression. For example, when you stretch a rubber band, the
band will become longer, but the width of the band will
become narrower. Materials that are truly incompressible
have a Poisson’s ratio ν of 0.5, since the sum of all their
strains result in zero volume change.
Soft biological tissues have a complex material behavior

because the material is made of an intricate network of long-
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