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a b s t r a c t

Regularization is an effective method for the solution of ill-posed ECG inverse problems, such as comput-
ing epicardial potentials from body surface potentials. The aim of this work was to explore more robust
regularization-based solutions through the application of subspace preconditioned LSQR (SP-LSQR) to
the study of model-based ECG inverse problems. Here, we presented three different subspace splitting
methods, i.e., SVD, wavelet transform and cosine transform schemes, to the design of the precondition-
ers for ill-posed problems, and to evaluate the performance of algorithms using a realistic heart-torso
model simulation protocol. The results demonstrated that when compared with the LSQR, LSQR-Tik and
Tik-LSQR method, the SP-LSQR produced higher efficiency and reconstructed more accurate epcicardial
potential distributions. Amongst the three applied subspace splitting schemes, the SVD-based precondi-
tioner yielded the best convergence rate and outperformed the other two in seeking the inverse solutions.
Moreover, when optimized by the genetic algorithms (GA), the performances of SP-LSQR method were
enhanced. The results from this investigation suggested that the SP-LSQR was a useful regularization
technique for cardiac inverse problems.

© 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The electrocardiography (ECG) inverse problem aims to quan-
titatively reconstruct epicardial, endocardial and myocardial
potentials, as well as electrograms and isochrones of the heart from
torso surface potentials [1–4]. Body surface potentials (BSPs, ϕB)
are related to epicardial potentials (EPs, ϕH) through the following
linear system equation:

AϕH = ϕB (1)

where A is the transfer matrix associated with volume conductor
(torso) properties including geometry, conductivity and distance
between epicardial surface nodes and the torso surface nodes.

It is known that the system function (1) is ill-posed [5] and it is
generally solved with regularization approaches, such as Tikhonov
regularization [6,7] and truncated singular-value decomposition
(TSVD) [8]. And several L-curve [9,10], generalized cross-validation
(GCV) [11] and zero crossing schemes [12], have been developed
for the determination of optimal regularization parameters and
corresponding inverse solutions.
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In addition to direct regularization schemes, we also used iter-
ative methods [13,14] for the solution of ill-posed problem. For
iterative algorithms, convergence was very important and precon-
ditioning functions as an effective way to enhance the convergence
rate of the algorithms. Hanke and Vogel [15] proposed an approach
for solving the Tikhonov problem with suitable preconditioning,
which was used for solving the least squares formulation of the
Tikhonov problem:

ϕH(�) = arg min
ϕH

||ÂϕH − ϕ̂B||2 = arg min
ϕH
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where Â =
[

A
�2I

]
and ϕ̂B =

[
ϕB
0

]
.

The key point of the algorithm was to divide the original
inverse solution space into two subspaces, one of them with a
smaller dimension. Proper basis vectors were chosen so that the
smaller subspace could be used for the representation of the
regularized solutions. Another implementation method (Subspace
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Preconditioned LSQR algorithm, SP-LSQR) for solving the two-level
Schur complement system was presented by Jacobsen and Hansen
[16,17]. The method was more efficient and more robust than
the two-level Schur complement CG algorithm. Later, a modified
version of the two-level iterative method [18] was proposed, which
showed a similar numerical performance.

Recently, to search robust regularization techniques for cardiac
inverse problems, we have investigated a series of regularization
schemes [4,14,19] and in this work the iterative SP-LSQR algorithms
were paid particular attention, with the intention of having a com-
prehensive set of regularization tools for the ECG inverse studies.

2. Methods

2.1. The subspace LSQR algorithm

In the subspace LSQR algorithm, the two-level precondition-
ers were designed to solve the Tikhonov problem. The regularized
solution ϕH� could be obtained in the form:

ϕH� = �u+ v (3)

where �∈ �n×k and  ∈ �n×(n−k). Here [�,� ] was an orthogonal
basis of �n, and the selection of basis vectors were usually selected
from the anterior columns to ensure that they contained low fre-
quency information. Furthermore, the number of columns of �
needed to be small, to avoid introducing small singular values into
the first part (�u), which could sometimes disturb the inverse solu-
tions. Both requirements lead to the fact that the most important
part of �H� was �u and therefore it could be easily calculated by a
direct method.

When substituting the regularized inverse solutions of the form
(3) into the Tikhonov problem, the problem could be reformatted
to be the following minimization problem:[
u

v

]
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the QR factorization of the matrix could be denoted as follows:
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with Q orthogonal and R upper triangular, then we would have:[
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[
u
v

]
− QT ϕ̂B

∥∥∥∥
2

= arg min
u,v

∥∥∥∥[ Y Z ]T Â[�  ]
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Thus, the inverse solutions ϕH� could be solved in the form:⎧⎪⎪⎨
⎪⎪⎩

v = arg min
v

||ZT Â v − ZT ϕ̂B||2 (a)

Ru = YT (ϕ̂B − Â v) (b)

ϕH� = �u+ v (c)

(7)

After defining a variable p = �v, the equation could be rewritten as
follows:⎧⎪⎪⎨
⎪⎪⎩
p = arg min

p
||ZT Âp− ZT ϕ̂B||2 (a)

Ru = YT (ϕ̂B − Âp) (b)

ϕH� = �u+ p (c)

(8)

In Eq. (8.a), the variable p could be calculated by the LSQR iterative
method and the Eq. (8.b) could be solved directly with the known
p. In this way, the inverse solutions ϕH� could be obtained by (8.c).

The right singular vectors associated with the first kth largest
singular values of the matrix A, were often implemented as the opti-
mal selection of subspace [16,18]. However, an optimal subspace
could not always be produced by the singular-value decomposi-
tion (SVD) method. Therefore other algorithms such as the wavelet
transform [20] and the cosine transform [21] have been considered
as alternative bases [�,� ] for seeking such a subspace. In this work,
two transforms have been considered for our study. In the wavelet
transformation, the Daubechies wavelets were used (where D = 4),
and the wavelet package developed by Nielsen [22] was introduced
to implement the wavelet transform. The Discrete cosine transform
(DCT) was conducted using the Matlab build-in routine. Both trans-
forms met the condition set, that is, the basis vectors had a higher
frequency as the column index grew. In this work, the performances
of these three different subspace splitting methods were evaluated
in solving the ECG inverse problem.

2.2. Simulation protocol

The simulation protocol was based on a geometrically realistic
heart-torso model [14,23,24] as shown in Fig. 1(a) which depicted
the epicardial, lung and torso geometries and corresponding mesh
information, where: the epicardial model: 187 nodes and 346 tri-
angles; lung model: 297 nodes and 586 triangles; torso model: 412
nodes and 820 triangles. The transfer matrix A was obtained by the
Boundary Element Method (BEM). In this study, we considered 220
torso surface nodes distributed in the vicinity of the heart (Fig. 1(a),
marked with a red star), which represented the electrode sites in
an assumed clinical body surface mapping system. For the inverse
problem, the system matrix had a dimension of 220 × 187 which
was obtained by an extraction procedure (from 412 × 187 down to
220 × 187), the resulting condition number of the system matrix
being 2.25 × 1012. Fig. 1(b) illustrated the different action potentials
(APs) for various myocardial cells [25] and the normal ventricu-
lar excitation sequence [23], from which the transmembrane APs
(ϕm) could be calculated. A heart surface source method [26,27]
was used to calculate the EPs for the normal heart, which related
the whole heart surface potential ϕWH to transmembrane APs (ϕm)
as the following equation:

ϕWH = TmHϕm (9)

Fig. 1(c) shows the closet surface that bounds the heart, includ-
ing epicardial surface (187 nodes and 346 triangles), endocardial
surface (290 nodes and 440 triangles), and top surface (21 nodes and
106 triangles). Following the heart surface source method, the rela-
tion matrix TmH could be calculated from the closest heart surface
geometry information. Thus the whole heart surface potential ϕWH

could be obtained (see in Fig. 1(d)), and the EPs ϕH (Fig. 1(e)) could
be used as the source to calculate the BSPsϕB (Fig. 1(f)). Here, a nor-
mal ventricular excitation sequence of the time at 27 ms, after the
onset of activation in the ventricles, is illustrated for the calculation
of epicardial potentials and body surface potentials.

In the inverse problem study, the torso surface potentials and
the transfer matrix A were employed to seek the EPs. To simulate
the noise involved in clinical practice, the linear system equation
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