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Understanding the causal basis of disease is important so
that we approach disease prevention and treatment

using a valid etiologic framework. Blood lipids play an
important role in the shuttling of nutrients (in the form of
triglycerides and fatty acids) and cholesterol from the diet

to the peripheral tissues. Certain types of blood lipids (eg,
low-density lipoprotein cholesterol [LDL-C] and probably
triglycerides [TG]) are atherogenic and lead to higher risks
for coronary heart disease (CHD).1-6 The role of high-
density lipoprotein cholesterol (HDL-C) to date has been
more elusive.2 Its central purported role is the reverse
transport of cholesterol, which theoretically should lead
to a net reduction in atheroma in the tunica intima of
the arterial vasculature (with supposedly commensurate
reductions in risk for vascular disease). This idea has come
under scrutiny in recent years in response to accumulating
scientific evidence5,7-9 suggesting that increases in con-
ventional measures of HDL-C may not lead to tangible
benefits to CHD. However, this does not rule out a
potentially important role of HDL-C in other diseases
(including other vascular diseases, such as abdominal
aortic aneurysm).10-12

In the accompanying study by Lanktree et al,10 the
authors aimed to dissect the nature of the relationship
between blood lipid concentrations and chronic kidney
disease (CKD). Although traditional observational data
provide evidence that HDL-C concentration is inversely
associated with risk of kidney disease,13 such findings need
to be interpreted with caution because the inherent limi-
tations of observational research (namely, confounding
and reverse causality) can distort findings. For example,
the inverse association of HDL-C concentration with CHD
seen in conventional observational studies2 has not been
validated in clinical trials14,15; similar confounding could
be at play in the reported associations of HDL-C with other
diseases, including CKD. Mendelian randomization (MR)
is an alternative analytical approach that uses genetic
variants that are inherited at random and are non-
modifiable to make causal inference that should be rela-
tively free of confounding and reverse causality.16,17

However, just as traditional observational studies have
their inherent limitations, MR studies also make assump-
tions and have potential limitations that can cloud their
interpretation.18-21 Recent methodological developments
in MR have allowed a relaxation of some of these

assumptions and provide sensitivity analyses with which to
scrutinize estimates from MR in further detail.18,22-25

Improved methodologies, together with the availability
of data platforms such as MR-Base26 and its extensions
implemented in “MR of everything vs everything”27

facilitate the conduct of MR analyses for multiple expo-
sures and multiple outcomes.

Lanktree et al10 used genetic variants identified from
genome-wide association analyses that are associated with
different concentrations of the 3 main blood lipid fractions
(namely LDL-C, HDL-C, and TG) reported by the Global
Lipids Genetics Consortium (GLGC).28 These genetic var-
iants were used to gauge insight into the causal relation-
ships of blood lipids with 3 markers of kidney function
reported from genome-wide association studies by the
CKD Genetics (CKDGen) consortium29: (1) estimated
glomerular filtration rate (eGFR) as a continuous trait
(percent difference), (2) dichotomized eGFR (odds ratio
of eGFR < 60 mL/min/1.73 m2), and (3) albumin-
creatinine ratio (ACR; percent difference). Using a
2-sample MR framework (in which the single-nucleotide
polymorphism [SNP]-to-exposure and SNP-to-outcome
estimates were obtained from predominantly nonover-
lapping data sets, with the authors reporting that <10% of
data overlapped between GLGC and CKDGen), Lanktree
et al10 provide evidence in support of blood lipid con-
centrations being linked to kidney function.

The authors identified that genetically elevated HDL-C
concentrations were associated with better eGFRs (a higher
percent difference in eGFR and lower risk for eGFR < 60 mL/
min/1.73 m2) and lower ACR using genetic instruments for
HDL-C. These associations remained robust to adjustment for
the association of the genetic variants with LDL-C, TG, and
hemoglobin A1c concentrations and blood pressure in so-
called multivariable MR.25 Such findings are commensurate
with HDL-C having a potentially protective role in kidney
function. However, the authors note that treatment trials of
drugs that increase HDL-C concentrations (such as the
Atherothrombosis Intervention inMetabolic SyndromeWith
Low HDL/High Triglycerides: Impact on Global Health
Outcomes [AIM-HIGH]30 trial of niacin) had no discernible
effect on kidney function. This discrepancy between a genetic
instrument for HDL-C versus a specific therapy may arise for
various reasons. First, a trial of an individual drug (such as
niacin) may have a separate effect on kidney function
compared with that of the overall causal effect of HDL-C
concentration, the latter being a broad biomarker that has a
genetic architecture comprisingmultiple independent loci.28
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Second, blood lipids may play a role in the cause of kidney
disease only at certain periods of life and not at others, a so-
called “critical period” effect.19 As an extension to the critical
period effect, lipids could be a causal risk factor for kidney
disease progression rather than disease onset; disease initia-
tion and progression could have distinct causes,meaning that
exposures causal for disease onset may not be necessarily
causal for progression (and vice versa).31

For LDL-C–related SNPs, a relationship of genetically
elevated LDL-C concentration with a higher percentage
difference in eGFR (ie, better kidney function) was
identified when LDL-C SNPs were examined on their own.
However, incorporating the relationship of the LDL-C SNPs
with other lipids, hemoglobin A1c, and blood pressure,
the association between genetically elevated LDL-C
concentration with percentage difference in eGFR became
less pronounced. For TG, the relationship of genetically
elevated TG concentration with percentage difference in
eGFR, while weak on its individual analysis, became more
pronounced on adjustment for these other traits.

These relationships are nontrivial to tease apart. For
example, adjusting the LDL-C SNPs for hemoglobin A1c
concentration (a marker of dysglycemia) could adjust for a
potential mediating effect of diabetes on CKD, thereby
resulting in the attenuation of the relationship between
LDL-C concentration and percentage difference in eGFR
that the authors report. Prior MR studies have shown that
higher LDL-C concentration is related to lower risk for type
2 diabetes mellitus,8,32 meaning that a causal pathway
could exist from higher LDL-C concentration to lower risk
for type 2 diabetes mellitus and lower risk for CKD.
Alternatively, the wider 95% confidence intervals and
resultant attenuated effect on percentage difference in
eGFR in multivariable adjustment could simply arise from
the imprecision introduced by the multivariate model,
meaning that a true relationship might exist.

The pattern of consistency of the association of the lipid
traits with the 3 kidney traits (percent difference in eGFR, risk
for eGFR < 60 mL/min/1.73 m2, and percent difference in
ACR) is where the complexity becomes further apparent. In
the case of HDL-C, there is, as one might expect, a direc-
tionally consistent relationship of HDL-C concentration with
percent difference in eGFR, risk for low eGFR, and percent
difference in ACR. The consistency across these traits
(although 2 are essentially marking the same entity; ie, eGFR)
forHDL-C lendsweight to a potential protective role ofHDL-C
in CKD. The same is not the case for LDL-C or TG, for which
both traits appear to associate with higher percent differences
in both eGFR and ACR, potentially indicating a physiologic
phenomenon for which there is higher filtration yet deterio-
rating function.

This study raises several questions about how to reliably
interpret these various strands of evidence. Undoubtedly the
main challenge in the wake of abundant genome-wide data
and large-scale resources such as the UK Biobank is how
to address the potential for genetic pleiotropy to confound the
estimates derived from MR. At a June 2017 MR conference

hosted by the Medical Research Council Integrative Epide-
miology Unit in Bristol, United Kingdom, more than 30 MR
methodologieswere presented, themajority ofwhich are new
and have yet to be subjected to the same scrutiny as those that
are becoming more established in the MR field.24 Although
exciting for those of us active in this field, it also poses major
challenges; for example, which approaches should we use in
our battery of tests when conducting MR, and what is the
added value of the newer methodologies? This will no doubt
be the subject of many narrative reviews to follow, but allow
us to synthesize a few points below, based on those MR
approaches that are now commonly used.

In the absence of genetic pleiotropy (the scenario in
which ≥1 genetic variant used in a genetic instrument asso-
ciates with >1 phenotype, described in detail in a recent re-
view19), the conventional MR estimate ought to provide a
reliable guide to the causal relationship of an exposure on an
outcome. Established sensitivity analyses include MR-
Egger–,22 median-,23 and mode-based24 approaches. Each
has its own assumptions on the type and amount of genetic
confounding (see Table 5 in Hartwig et al24), meaning that if

Figure 1. Challenges in interpreting multivariable Mendelian
randomization (MR) analyses. Scenario 1: use of multivariable
MR when the second biomarker (in addition to the exposure)
lies on the causal pathway to disease. Adjusting for a potential
mediator as a form ofmediation analysis is suboptimal because er-
ror terms in the exposure to intermediate relationship are not prop-
erly accounted for in the analysis. Scenario 2: use of multivariable
MR when the second biomarker measures the same entities as
the primary exposure. Adjusting an exposure for an overlapping
trait has the net effect of autoadjusting, meaning that the findings
frommultivariableMRare unreliable. In scenario 1, biomarker 2 is a
mediating phenotype of the exposure (eg, investigating the degree
to which triglycerides mediate the relationship of body mass index
with risk for coronary heart disease43); in scenario 2, biomarker 2 is
an overlapping trait with the exposure (eg, assessing the role of
triglycerides and non–high-density lipoprotein cholesterol in
risk for coronary heart disease38). Abbreviation: SNP, single-
nucleotide polymorphism.
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