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Haversian cortical bone model with many radial microcracks:
An elastic analytic solution
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Abstract

In this study, the fracture micromechanics of Haversian cortical bone has been considered. To this effect, a two-dimensional micromechanical
fibre–ceramic matrix composite tissue materials model has been presented. The interstitial tissue was modeled as a matrix and the osteon
was modeled as a fibre, followed by the application of linear elastic fracture mechanics theory. The solution for edge dislocations, in terms
of Green’s functions, was adopted to formulate a system of singular integral equations for the radial microcracks in the matrix in vicinity of
the osteon. The problem was solved for various configurations and the corresponding stress intensity factors were computed. The results of
this study indicated that the interaction between microcracks and an osteon was limited to vicinity of the osteon. Furthermore, the effect of
microstructure morphology and heterogeneity on the fracture behavior has been established. The interactions between microcracks were also
analyzed for various configurations. These selected configurations exhibited the effects of stress amplification and stress shielding.
© 2006 IPEM. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Bone undergoes microdamage in the form of microcracks
due to fatigue and cyclic loading [1–3]. The microcracks can
coalescence causing a reduction in the mechanical proper-
ties of the bone [4,5]. The weakness caused by microcracks
has been accepted as a primary assumption in the study of
mechanical properties of this tissue [5–7]. This will increase
the possibility of fracture [8–10]. The relationship between
the microcracks and the parameters governing fracture, e.g.
those associated with toughness, has not as yet been fully
understood and analyzed [11–13].

Formation and growth of microcracks are related to the
bone microstructure [1,14]. The human Haversian corti-
cal bone has been considered as a composite material and
modeled as fibre–ceramic matrix in microstructural stud-
ies [15–17]. Osteons are considered as fibres and interstitial
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tissue as matrix in this composite material. The interface
between the osteons and interstitial tissue is a third type of
tissue forming the cement line.

Fracture phenomena in Haversian cortical bone are pri-
marily affected by the morphology and heterogeneity of
the microstructure [12–14,18]. However, variations in these
parameters caused by the aging process can make the prob-
lem rather more complicated [12,19,20]. For example, the
aging process increases the differences in the mechanical
properties of osteons and interstitial tissue [19]. This has a
profound effect upon the fracture behavior of bone [12,13].
It is thus necessary to enhance the understanding of the
mechanisms governing fracture in Haversian cortical bone
[18].

In this study, linear elastic fracture mechanics (LEFM)
theory was adopted for the analysis of fracture in compos-
ite fibre–ceramic matrix materials [21]. This theory has also
been used in determination of the bone resistance to frac-
ture [22–24]. However, only a limited number of studies have
considered fracture micromechanics in the Haversian cortical
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bone [13,25–27]. Amongst such investigations, Lakes et al.
have reported that the fracture behavior of microcracks with
lengths of 250–500 �m in Haversian cortical bone can not be
predicted by LEFM of a uniform material [25]. Furthermore,
Martin and Burr have reported microcrack growth-arrest by
the cement line [27]. Guo et al. have reported on the osteonal
effect on a microcrack that was oriented perpendicularly to
the external load [13]. However, a detailed description of the
relationship between microcracks and fracture behavior has
not as yet been provided. To understand this relation, it is
necessary to begin by formulating a sufficiently encompass-
ing description of microcrack governing micromechanics,
accompanied by the description of the interaction between
existing microcracks.

The objectives of the current study have been to pro-
vide a realistically simple model of Haversian cortical bone
microstructure, so as to obtain a clearer description of the
rules governing the mutual interaction amongst microcracks
assuming LEFM theory. Furthermore, interaction between
an osteon and radial microcracks was studied to establish the
susceptibility of fracture behavior to microstructure.

2. Methods

The assumption of plane strain conditions and linear elas-
tic fracture mechanics in a two-dimensional model of the
bone could be justified by the similarities between Haversian
cortical bone and the composite fibre–ceramic matrix materi-
als. The osteons were represented as fibres and the interstitial
tissue was considered as a matrix and the cement line was
excluded in this model. All the tissues were assumed homoge-
nous. Furthermore, the osteonal interaction was ignored by
considering a single osteon. Exclusion of the Haversian chan-
nel structure, on the other hand, leads to the single osteon
being represented by a solid cylinder.

The model consists of a single osteon with the radius
R0 = 100 �m [17], and constants of K2 and G2 situated within
a matrix resembling the interstitial tissue with constants K1
and G1, as shown in Fig. 1, where Gi are the shear moduli
and Ki, with respect to Poisson’s ratio (νi) in plane strain
condition, are computed as Ki = 3–4νi. Here (n) radial micro-
cracks, each having a length 2Li, where Li is assumed to be
50–150 �m [9], were situated within the interstitial tissue. A
uniform tensile load of σ0 = 10 MPa was applied to the model
at the infinity [16]. The interface between the osteon and the
interstitial tissue was also assumed to be a perfectly bonding.

Mechanical properties of bone constituents are greatly
affected by such factors as bone type and anatomical
location. The average elastic moduli in human diaphyseal
femoral bone, for example, are found to be 19.3 ± 5.4 GPa in
osteonal and 21.2 ± 5.3 GPa in interstitial lamellae [28]. In
the neck, the average moduli are 15.8 ± 5.3 GPa in osteonal,
17.5 ± 5.3 GPa in interstitial lamellae [28]. Table 1 shows
the various mechanical properties of individual constituents
in the model.

Fig. 1. Osteon-interstitial tissue model.

It was thus possible to solve the problem as a superposition
of two distinct problems. In the first problem, an elastic osteon
situated within an infinite elastic plane, similar to interstitial
tissue, and without any microcracks was considered. This
problem was solved for an external load of σ0.

The second problem described stress disturbance due
to microcracks in the interstitial tissue. Here, the exter-
nal loads were limited to the microcrack surface tractions.
The external loads were equal in magnitude and opposite
in sign to the obtained stress in the presumed location of
microcracks as described by the first problem. It should,
however, be noted that formulation of stress equations for
individual microcracks does entail the effects of other micro-
cracks. It is apparent that the second problem contains a
singularity.

2.1. Solutions of equations of elasticity, in polar
coordinates

Solution of the first problem for a uniaxial tension at infin-
ity is as follow [29]:
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[
cos2θ − 2G1

(
A

r2 +
(

−3B

r4 + 2C

r2

)
cos 2θ

)]
(1a)

Table 1
Mechanical properties of model constituents

Effective elastic modulus
(GPa)

Effective shear modulus
(GPa)

Osteon
fibrea (E2)

Interstitial
tissuea (E1)

Osteon
fibrea (G2)

Interstitial
tissuea (G1)

Soft osteon 19 21 7.31 8.08
Stiff osteon 19 16 7.31 6.15

a Poisson’s ratio ν1 = ν2 = 0.3.
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