

Nanomedicine: Nanotechnology, Biology, and Medicine 11 (2015) 109-118

BASIC SCIENCE

Original Article

Nanotechnology, Biology, and Medicine

nanomedjournal.com

Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme

Sayan Mullick Chowdhury, PhD^{b,1}, Cassandra Surhland, MS^{b,1}, Zina Sanchez, MS^a, Pankaj Chaudhary, PhD^c, M.A. Suresh Kumar, PhD^a, Stephen Lee, BS^b, Louis A. Peña, PhD^{b,d}, Michael Waring, PhD^e, Balaji Sitharaman, PhD^{b,*}, Mamta Naidu, PhD^{f,**}

^aDepartment of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA

^bDepartment of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA

^cCentre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK

^dBiosciences Department, Brookhaven National Laboratory, Upton, NY, USA

^eDepartment of Pharmacology, Tennis Court Road, Cambridge University, Cambridge, UK

^fGeneSys Research Institute/Center for Cancer Systems Biology at Tufts School of Medicine, Boston, MA, USA

Received 16 August 2013; accepted 5 August 2014

Abstract

We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 h. However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.

From the Clinical Editor: This study reports on the utility of PEG-DSPE coated oxidized graphene nanoribbons as anti-tumor drug delivery agents of Lucanthone into Glioblastoma Multiformae cells targeting base excision repair enzyme APE-1, demonstrating promising anti-tumor effects with good preservation of healthy cells.

© 2015 Elsevier Inc. All rights reserved.

Key words: Apurinic endonuclease-1; Thioxanthenones; Lucanthone; Graphene nanoribbons; GBM; CG-4; Rat glial progenitor cells

APE-1, the primary base excision repair (BER) enzyme of mammalian system is over-expressed in a variety of tumors.¹ Although there is evidence both for and against a correlation between APE-1 levels and radioresistance in tumors,² an inverse relationship between the expression level of APE-1 and radiation and chemotherapy responses has been observed in medulloblastoma and primitive neuroectodermal tumors.¹ *In vitro* studies have also shown that APE-1 contributes to the glioma cell resistance in

¹ Equal contributors.

http://dx.doi.org/10.1016/j.nano.2014.08.001 1549-9634/© 2015 Elsevier Inc. All rights reserved. response to alkylating agents therapy, and its endonuclease activity is increased by oxidative stress.³ Previously, we⁴ and others^{5,6} had demonstrated a correlation between base excision repair protein APE-1 and radiation sensitivity with GBM cell cultures. Also, we have shown that thioxanthenones such as lucanthone (CAS 479-50-5) and hycanthone (CAS 3105-97-3) inhibit the APE-1 endonuclease function in GBM cell lines with higher or overexpressed APE-1 levels without affecting its DNA substrate binding function.⁷ As the next step, it is essential to determine whether we can use this mechanistic insight to cause tumor regression in mouse tumor models. However, as APE-1 is present both in normal and tumor cells, a way to target these thioxanthenones to GBM and other tumors specifically with no/ minimal damage to the surrounding normal tissue is needed.

Graphene, a two dimensional, single layer, hexagonal lattice of carbon atoms has attracted much attention due to its unique chemical and physical properties.⁸ Studies have also established

Please cite this article as: Chowdhury SM, et al, Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. *Nanomedicine: NBM* 2015;11:109-118, http://dx.doi.org/10.1016/j.nano.2014.08.001

This work was supported by DOE grant to LP (DOE grant KP-1401020/ MO-079) and NIH grant to SB (1DP2OD007394-01).

^{*}Correspondence to: B. Sitharaman, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794.

^{**}Correspondence to: M. Naidu, GeneSys Research Institute/Center for Cancer Systems Biology, Tufts University School of Medicine, Boston, MA 02135.

E-mail addresses: balaji.sitharaman@stonybrook.edu (B. Sitharaman), mamta.naidu@steward.org (M. Naidu).

that graphene can be used in various biomedical applications such as imaging and drug delivery.^{9–11} The large surface of graphene can be chemically modified with a wide variety of molecules that can enhance biocompatibility,¹² solubility,¹³ or allow the targeting to specific cell types and hence proves to be a good platform for biomedical use.¹⁴ Reports show that oxidized graphene nanoplatelets synthesized by modified Hummer's method (chemical oxidation of graphite followed by ultrasonic cleavage) and coated with the amphiphilic polymer 1,2-distearoyl-*sn*-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol (DSPE-PEG) can load high amounts of aromatic molecules such as the drug doxorubicin and release them into tumor cells.^{13,15} The loading of the drug is achieved through the pi-stacking, a non-covalent interaction between electrons in adjacent pi bonds.^{13,15}

Recently, Kosynkin and co-workers have pioneered a method that allows the synthesis of oxidized graphene nanoribbons (O-GNRs) in macroscopic amounts by the longitudinal unzipping of multi walled carbon nanotubes.¹⁶ Our recent *in vitro* studies indicate that these nanoparticles coated with PEG-DSPE (hereafter called O-GNR-PEG-DSPE) may also be suitable for cell specific drug delivery.¹⁷ In this paper, we report the efficacy of O-GNR-PEG-DSPE to load and deliver Luc to the GBM cell line U251.

Methods

Reagents

Cell line U251 and reagents used for measuring endonuclease activity were as described previously.⁷ CG-4, rat glial progenitor cell line that remains a progenitor for only about 20–25 passages was kind gift from Dr. Toru Ogata from Research Institute, Namiki, Tokorozawa-City, Japan. Luc obtained from Dr. S. Archer (Sterling-Winthrop Research Institute, Rensselaer, NY) were maintained at 4 °C under hygroscopic conditions, and dissolved in 1.2 mg/mL PEG-DSPE (in double distilled water) just prior to reactions. Plasmids consisting of full length APE-1 in pCMV10 were a kind gift from Dr. Bruce Demple (Stony Brook University, NY). Multi-walled carbon nanotubes and propidium iodide (PI) were obtained from Sigma Aldrich. All cell culture components were obtained from Trevigen.

Cell culture

U251 transfected with either the blank plasmid pCMV10 (CMV/U251) or full length APE-1 in pCMV10 (AI-5/CMV/U251) were grown in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum and 800 μ g/ml of G418. CG-4 were grown in 70% of DMEM F12 containing 1X penicillin-streptomycin (100 μ g/ml Streptomycin + 100 U of penicillin) (PS) with 1X N2 supplement (containing 1 mM Transferrin, 0.06 mM Insulin, 0.002 mM progesterone, 10 mM putresceine and 0.003 mM selenite) and 30% of B104 conditioned medium. MCF-7 were grown at 37 °C in a humidified atmosphere of 5% CO₂ in RPMI medium supplemented with 10% fetal bovine serum and 1X PS.

O-GNR synthesis

O-GNRs were synthesized from multi-walled carbon nanotubes (MWCNTs)(Sigma-Aldrich, Length = $5-9 \mu m$) using the oxidative longitudinal unzipping method.¹⁶ Briefly, MWCNTs (150 mg) were suspended in 30 ml concentrated (96%) H₂SO₄. After 4 h, 4.75 mM KMnO₄ was added slowly and stirred for an h followed by further stirring for another h at 55–70 °C in an oil bath. This solution was poured on ice (400 ml) containing 5 mL 30% H₂O₂ and the ice-H₂O₂ slurry was allowed to melt. The solution obtained was centrifuged at 3000 rpm for 30 minutes, after which the supernatant was discarded. The pellet obtained was then washed with 36% HCl. Ethanol and ether washes were used for flocculation and the final product (O-GNR) was obtained as pellet after centrifugation (30 minutes, 3000 rpm). This product was dried overnight in a vacuum oven at 60 °C.

O-GNRs were characterized using atomic force microscopy (AFM) and transmission electron microscopy (TEM). AFM images were obtained using a Nano Surf Easy Scan 2 AFM (NanoScience Instruments Inc, Phoenix, AZ) operating in tapping mode using a V-shaped cantilever and TEM images were obtained using a Tecnai Bio Twin G transmission electron microscope (FEI, Hillsboro, OR), at 80 kV.

Luc loading on O-GNR-PEG-DSPE

Powdered O-GNRs were dispersed in a solution of 1.2 mg/mL 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)) (PEG-DSPE), at a concentration of 1 mg/mL. This dispersion was bath sonicated for 30 minutes to produce O-GNR-PEG-DSPE. 1 mg/mL solution of Luc in 1.2 mg/mL PEG-DSPE served as a Luc stock solution. 200 µL of the O-GNR-PEG-DSPE solution and 400 μ L of the Luc solution were combined in a 20 mL glass vial, and the total volume was made up to 1 mL using a stock solution of 1.2 mg/mL PEG-DSPE and stirred at 4 °C for 24 h. After this loading period, unincorporated Luc was separated out from the loaded O-GNRs by centrifugation at 13000 RPM for 1 hour. In order to calculate the loading efficiency, the absorbance of the supernatant was measured at 328 nm using an Evolution 300 UV-vis Spectrophotometer (Thermo Fisher Scientific, Waltham, MA) and compared to a standard curve. The loading efficiency was calculated by subtracting the unloaded Luc from the total available Luc. Loaded O-GNR-PEG-DSPEs were left in pellet form until used.

Uptake of O-GNR-PEG-DSPE in the U251 and CG-4 cell lines (using flow cytometry)

O-GNR-PEG-DSPEs were loaded with PI and purified using the same method used for Luc loading. CMV/U251 and A1-5/ CMV/U251 were grown in 10 cm dishes at 37 °C and 5% CO₂ in DMEM. Cells were either incubated with PI-loaded O-GNR-PEG-DSPEs at a concentration of 40 μ g per mL (previously reported to be a non-toxic concentration) (15) of media, or left untreated. After 24 h, cells were trypsinized, resuspended in FACS buffer (1X PBS containing 20% fetal bovine serum) and placed on ice. Flow cytometry was performed immediately after all samples were prepared using a FACS Calibur Cell Sorter (BD Biosciences, San Jose, CA).

Transmission electron microscopy

Six well plates with surfaces covered with ACLAR[®] film (Electron Microscopy Sciences, Hatford, PA) were plated with CMV/U251 and MCF-7 cells at a density of 5×10^5 cells per

Download English Version:

https://daneshyari.com/en/article/877416

Download Persian Version:

https://daneshyari.com/article/877416

Daneshyari.com