
Personalized Prediction of Glaucoma
Progression Under Different Target
Intraocular Pressure Levels Using Filtered
Forecasting Methods

Pooyan Kazemian, PhD,1,2 Mariel S. Lavieri, PhD,3 Mark P. Van Oyen, PhD,3 Chris Andrews, PhD,4,5

Joshua D. Stein, MD, MS4,5,6

Purpose: To generate personalized forecasts of how patients with open-angle glaucoma (OAG) experience
disease progression at different intraocular pressure (IOP) levels to aid clinicians with setting personalized target
IOPs.

Design: Secondary analyses using longitudinal data from 2 randomized controlled trials.
Participants: Participants with moderate or advanced OAG from the Collaborative Initial Glaucoma Treat-

ment Study (CIGTS) or the Advanced Glaucoma Intervention Study (AGIS).
Methods: By using perimetric and tonometric data from trial participants, we developed and validated

Kalman Filter (KF) models for fast-, slow-, and nonprogressing patients with OAG. The KF can generate
personalized and dynamically updated forecasts of OAG progression under different target IOP levels. For each
participant, we determined how mean deviation (MD) would change if the patient maintains his/her IOP at 1 of 7
levels (6, 9, 12, 15, 18, 21, or 24 mmHg) over the next 5 years. We also model and predict changes to MD over the
same time horizon if IOP is increased or decreased by 3, 6, and 9 mmHg from the level attained in the trials.

Main Outcome Measures: Personalized estimates of the change in MD under different target IOP levels.
Results: A total of 571 participants (mean age, 64.2 years; standard deviation, 10.9) were followed for a mean

of 6.5 years (standard deviation, 2.8). Our models predicted that, on average, fast progressors would lose 2.1, 6.7,
and 11.2 decibels (dB) MD under target IOPs of 6, 15, and 24 mmHg, respectively, over 5 years. In contrast, on
average, slow progressors would lose 0.8, 2.1, and 4.1 dB MD under the same target IOPs and time frame. When
using our tool to quantify the OAG progression dynamics for all 571 patients, we found no statistically significant
differences over 5 years between progression for black versus white, male versus female, and CIGTS versus AGIS
participants under different target IOPs (P > 0.05 for all).

Conclusions: To our knowledge, this is the first clinical decision-making tool that generates personalized
forecasts of the trajectory of OAG progression at different target IOP levels. This approach can help clinicians
determine appropriate, personalized target IOPs for patients with OAG. Ophthalmology 2017;-:1e9 ª 2017 by
the American Academy of Ophthalmology

Supplemental material available at www.aaojournal.org.

The American Academy of Ophthalmology Preferred
Practice Pattern for primary open-angle glaucoma (OAG)
emphasizes the importance of setting a target level of
intraocular pressure (IOP) for patients with glaucoma. By
establishing a target IOP level, clinicians can gauge whether
the interventions they are performing are effectively
lowering the IOP to a level that is deemed safe or not and
whether additional interventions are necessary.

Although there is consensus among the glaucoma com-
munity that establishing a target IOP is useful in patient
management, it is unclear what the optimal target IOP for a
given patient should be. Traditionally, clinicians have used
the results of landmark glaucoma clinical trials, past expe-
rience, and their gestalt to aid with target IOP selection.

However, selecting a target IOP lower than what is required
for a particular patient can lead to exposure to unnecessary
medical and surgical interventions, which may have side
effects, be fraught with complications, and be costly.
Likewise, by selecting a target IOP higher than what is
actually required, the patient is at risk of experiencing dis-
ease progression. Thus, improving the selection of the
proper target IOP level can be useful in managing patients
with OAG.

An ideal method for selecting the proper target IOP
would consider the glaucoma progression dynamics of a
population of similar patients to capture how they progress
at different IOP levels along with the unique disease pro-
gression dynamics of the particular patient in question. This

1ª 2017 by the American Academy of Ophthalmology
Published by Elsevier Inc.

https://doi.org/10.1016/j.ophtha.2017.10.033
ISSN 0161-6420/17

www.aaojournal.org
https://doi.org/10.1016/j.ophtha.2017.10.033


would be used to generate personalized forecasts of
disease progression under different IOP levels. These
assessments can be dynamically updated each time the
patient undergoes additional glaucoma testing. Furthermore,
because patients vary from one another on a host of factors,
including sociodemographic characteristics, overall health
and life expectancy, ability to tolerate different in-
terventions, and preferences for aggressiveness of glaucoma
control, a decision-making tool that informs clinicians about
the glaucoma progression trajectories at different target IOP
levels is more valuable than a tool that determines only 1
specific target IOP level for a particular patient. This would
enable the clinician and patient to jointly decide on the most
appropriate target IOP on the basis of his or her unique
circumstances and preferences.

We describe a novel technique using a Kalman Filter
(KF) to develop a personalized and dynamically updated
menu of target IOPs for patients with OAG. The KF is a
technique that has been used for decades by the aerospace
industry to help guide flights.1 More recently, this technique
has been used to forecast disease progression in patients
with conditions such as diabetes2,3 and prostate cancer.4 It
incorporates disease progression dynamics from an
underlying population of patients with the condition of
interest along with past measurements from the specific
patient of interest to generate personalized disease
forecasts. This technique also allows for updating of the
forecasts each time additional readings are obtained.

Methods

Data Sources

We used data from the Collaborative Initial Glaucoma Treatment
Study (CIGTS) and the Advanced Glaucoma Intervention Study
(AGIS) to parametrize and validate our models. Briefly, the CIGTS
is a multicenter clinical trial involving 607 participants with newly
diagnosed moderate OAG who were enrolled in 1993e1997 and
followed for 5 to 9 years. The patients were randomized to glau-
coma medications or trabeculectomy. The AGIS enrolled 591
participants with advanced OAG in 1988e1992 and followed them
for 8 to 11 years. The patients were randomized to receive argon
laser trabeculoplasty or trabeculectomy. The participants in both
trials were followed with tonometry and perimetry measurements
obtained every 6 months during their follow-up time. Details about
the study methodology of these trials have been described.5,6 The
CIGTS and AGIS data were de-identified before our accessing it,
and the University of Michigan Institutional Review Board
approved this study.

Inclusion/Exclusion Criteria

Both trials required participants to have a diagnosis of OAG in �1
eye, with elevated IOP at trial entry. For this study, we included
only those persons from the trials who had been randomized to
receive medical therapy or argon laser trabeculoplasty. Persons
who had been randomized to trabeculectomy were excluded
because incisional surgery can dramatically affect IOP and disease
progression dynamics, and this adds complexity to the training of
our forecasting algorithms. Furthermore, during follow-up, trial
participants who later required incisional surgery were censored at
the time they underwent trabeculectomy. We also excluded persons
who had fewer than 4 IOP measurements or 4 visual field tests

using a Humphrey Field Analyzer (Carl Zeiss Meditec, Dublin,
CA). When both eyes of a participant met the eligibility criteria, we
randomly selected 1 of the 2 eyes for inclusion in our analyses.
After these exclusions, there were 571 eyes of 571 participants
(266 from CIGTS and 305 from AGIS) who met the eligibility
criteria.

Kalman Filter

At the heart of our decision support tool, we harnessed KF meth-
odology.7 A KF is a powerful statistical method that processes
large amounts of quantitative data to forecast the trajectory of a
system. This technology has been critical to aerospace
engineering, including guiding Apollo missions to the moon.1

More recently, it has been used to forecast the development or
worsening of chronic diseases,4,8e12 and we have used it to fore-
cast OAG progression.13

The following example explains how this method works.
Consider the prediction of where a spacecraft, presently in motion
at point [x,y,z] in space, will be located in the future (e.g., 10, 20,
30, 40 seconds later) relative to a docking bay. Every 10 seconds, a
new measurement of the spacecraft’s location [x,y,z] is obtained.
All measurements possess some error (noise). Traditional regres-
sion models use a data set of prior flights using similar spacecrafts
and provide a linear relationship between independent (e.g., current
location) and dependent (future location [x,y,z]) variables so as to
minimize the mean squared error. However, these models were not
designed for dynamic updates to the model as new measurements
are taken. Instead, with KF, each time a measurement is obtained,
the model updates an estimate of the dependent variables based on
input variables to minimize mean squared prediction error at each
future stage. The effective estimates of current and future locations
of the spacecraft require that the functions relating inputs (previ-
ously measured locations of the spacecraft) and outputs (future
location) are connected over time. This is captured as a dynamic
model of internal “state” variable transitions that describes how the
process (motion of the spacecraft) changes over time. In addition to
the [x,y,z] location, the internal state variables of a good model
may include first and second derivatives on [x,y,z] position (ve-
locity and acceleration, respectively). A set of equations relates the
measured input variables to the full set of internal state variables,
so that the system modeled (current and future motion of the
spacecraft) can be optimally updated with each new measurement
obtained. Such updating compares the newly obtained measure-
ment (location of the modeled spacecraft) to what would have been
expected from the population at that point in time (e.g., prior flights
for similar spacecrafts) and what has been learned from the process
modeled (e.g., as more measurements are obtained, the technique
may reveal that the spacecraft being modeled is faster or slower
than average similar spacecrafts). In addition, the method allows
the model to include inherent randomness in the “motion” of the
state and models of randomness in the observations specific to the
measurements (the variability in manually measuring the space-
craft’s location).

Forecasting OAG trajectory is analogous to determining a
spacecraft’s trajectory over time: The type of spacecraft is analo-
gous to sociodemographic characteristics of the patient (e.g., age,
sex, race) and other risk factors known to affect OAG progression.
The position (or the state of the system) at the past, present, and
future is analogous to the mean deviation (MD) and pattern stan-
dard deviation (PSD) on standard automated perimetry (SAP), and
the IOP at different points in time. These variables help illuminate
the disease’s current state and how it is changing over time.
Moreover, the error or noise in the location measurements of our
spacecraft analogy is akin to the error associated with SAP and IOP
measurements. Randomness in the motion of the spacecraft (e.g.,
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