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A B S T R A C T

When humans (or robots) move through a scene, the scene can be represented as an optic flow (optical flow)
field that contains vectors representing all of the movement within the scene projected onto a two-dimensional
sensor. A simultaneous sample of these resulting vectors contain a good deal of information. A general model of
motion estimation of local vectors would therefore be valuable. This paper addresses the estimation of motion
vectors with uniform motion over a fixed time period. Previous reported attempts at computing motion esti-
mation have been dominated by the machine vision community, however, these attempts are not specifically
concerned with biological plausibility. Here, the author presents a model of motion estimation that computes
motion based on filtering the moving image into sinusoidal responses varying in spatial frequency and or-
ientation similar to the early visual responses found in human vision. Unlike similar spatio-temporal energy
models “motion energy” is not computed. The model is mathematically explicit and simulated in MATLAB. It has
been tested using over 7000 synthetic moving images with known veridical velocity (ground truth). These
images range from sparse translating patterns containing 1 to 10,000 random pixels, to dense narrow band
sinusoidal patterns. Simulation results show that the model correctly estimates motion trajectories between 84%
and 100% angular direction error (within±2°), and displacement error (within± 1 pixel). The results remain
robust at different contrasts. In addition, a number of psychophysical and physiological results are examined in
the context of the model.

1. Introduction

The term ‘Optic Flow’ was first introduced by J.J. Gibson in the
1940s (Gibson, 1950). Optic flow refers to a field of vectors re-
presenting the instantaneous flow of motion on the retina (or retinae) as
an observer moves through an environment. ‘Optical Flow’ is now
frequently used by computer scientists to refer to similar fields resulting
from both human observers and non-human agents. The motion may be
caused by the observer’s movement through the scene, or by objects
moving within the scene. Each vector in the field represents the speed
and direction of motion at a specific position and at a specific time
projected from the 3D scene onto the 2D retina. A simultaneous sample
of these vectors contain important information about the objects in the
scene, e.g. relative depth; shape of objects; or signatures of specific
biological motion. Although there are a number of excellent approaches
to computing optical flow published in the machine vision literature
(Fortun, Bouthemy, & Kervrann, 2015), these have been largely un-
concerned with biological plausibility, and often favour “gradient”
based models for extracting individual velocity vectors (see Section 4.1

for a discussion of gradient models). Gradient models generally operate
on the two dimensional image and therefore do not reflect typical
characteristics of human motion processing. Human motion appears to
be extracted following filtering operations that decompose the two di-
mensional image into sets of sinusoids. Therefore this paper describes a
model of motion estimation of individual vectors that incorporates this
well established result, and knowledge gained from vision science
(physiological and psychophysical) that better represent the char-
acteristics of human motion processing.

The most ubiquitous models that are more characteristic of human
local motion estimation, are “spatio-temporal energy models”. These
models are based on “motion energy” that is computed directly from
the amplitude or power of the object’s underlying Fourier components
(or wavelet equivalent (Adelson & Bergen, 1985)). This generally leads
to the requirement of some form of normalising mechanism, because an
important property of motion estimation is that it is has to be in-
dependent of the object’s colour, brightness, or contrast. For example, it
is not important to know that an oncoming vehicle is black or white,
just what direction it is moving in and at what speed. See Section 4.2 for
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a discussion of a more recent motion energy model. One of the strengths
of the Component Level Feature Model (CLFM) (Bowns, 2011) is that,
although it shares some of the established biological characteristics of
spatio-temporal energy models, it is invariant to contrast, and therefore
does not require a normalising mechanism. The implementation,
however, was restricted to extracting direction up to a reflection for two
component sinusoidal translating patterns (i.e. plaids), and therefore
falls short of a general model of motion estimation. This paper uses
some of the basic ideas underlying the CLFM but the model is enhanced
so that (1) the model is mathematically explicit, and programmed in
MATLAB. (2) absolute direction (and not just relative direction) is
computed, (3) displacement (and therefore speed) is computed; (4)
results are reported for a wider range of synthetic patterns, i.e. plaids
that vary across a greater range of properties, and random pixel pat-
terns with varying densities ranging from 1 pixel to 10,000 pixels. The
next section provides equations describing each step of CLFM, together
with a verbal description. Each step is introduced with a brief rationale
of why the step is necessary and its relevance to the human visual
system. The simulation results are then presented. CLFM is discussed in
the context of other types of models, and a physiological interpretation
of CLFM is suggested by comparing the specific steps of the model with
those of a spatio-temporal energy model. Finally, frame by frame ana-
lysis of atypical plaids illustrates how CLFM can produce behaviour
resembling that of human observers, and in doing so eliminate the need
for supplementary mechanisms that spatio-temporal energy models
have required.

2. Computing the component level feature model

Step 1: Filter each frame of the moving image with a bank of oriented
Gabor filters.

Images can be broken down into sinusoidal components that vary in
orientation, spatial frequency, contrast, and phase. Humans and other
mammals have evolved neurones to extract sinusoidal patterns at dif-
ferent spatial frequencies and orientations at an early stage of visual
processing to efficiently encode images (Campbell & Robson, 1968).
Neurones in visual area V1 in mammals have been shown to be selec-
tive for spatial frequency and orientation (Hubel & Wiesel, 1962), and
to respond to motion perpendicular to the orientation in both visual
areas V1 and MT (Albright, 1984; Foster, Gaska, Nagler, & Pollen, 1985;
Movshon & Blakemore, 1973). Oriented Gabor filters are often used to
simulate receptive fields that respond to both spatial frequency and
orientation, Adelson and Bergen (1985), Daugman (1984), Watson and
Ahumada (1985).

= ∗r x y ω θ t I x y t G ω θ( , , , , ) ( , , ) ( , ) (1)

Eq. (1) shows a specific response to filtering a single frame t, from
an image sequence t= [1,n], with a Gabor filter with parameters spa-
tial frequency ω and orientation θ; with choice of =ω ω ω[ , ]m1 and then
for each ω there is a corresponding set of orientations =θ θ theta[ , ]p1 . R
will be used to describe the set of responses at time t.

Step 2: Select the two largest filter responses at the same spatial fre-
quency but at different orientations for each frame.

It is common practice in vision research to assume efficiency
through the use of lossy selection, i.e. abandoning unnecessary in-
formation. Subsequent processes only require two responses at the same
spatial frequency and at two different orientations. However, as will
become apparent, using more than two orientations should not change
the outcome of the results.

=ω θ R x y ω θ t( 1, 1) argmax( ( , , , , ))
ω θ, (2)

=r x y t R x y ω θ t( , , ) ( , , 1, 1, )1 (3)
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θ θ θ

2
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For each position (x,y) in a given frame t find the spatial frequency
and orientation, ω θ( 1, 1) at which the response is maximum (Eq. (2)),
and denote this maximum response by r x y t( , , )1 (Eq. (3)). Then find the
orientation θ2 for which the response at spatial frequency ω1 has the
second highest value, and denote this r x y t( , , )2 (Eq. (4)).

Step 3: Extract the mean values from the maximal filter responses r1 and
r2 for each frame.

The mean values from r1 and r2 are going to be used to compute
velocity in accordance with the “Intersection of Constraints Rule” (IOC)
(Fennema & Thompson, 1979). The IOC and how the mean values are
used to compute the IOC will be described in the next step. The mean
values of the filter responses are extracted by convolving r1 and r2 with a
Laplacian of a Gaussian operator. This has the effect of aligning the
mean values with the zero-crossings of the image function. These zero-
crossings are then thresholded about the zero-crossing. Gabor filter
responses are both sinusoidal and oriented, extracting the means
therefore produces oriented line segments. These lines have double the
frequency of the original spatial frequency of the filter responses r1 and
r2. Most importantly, these lines are invariant to contrast.

= ∗∇ − +Z x y t r G( , , ) ( 1 )[ 0.00001, 0.00001]n
σ1 1

2 (5)

= ∗∇ − +Z x y t r G( , , ) ( 2 )[ 0.00001, 0.00001]n
σ2 1

2 (6)

Eqs. (5) and (6) produce two images Z1 and Z2 of thresholded zero-
crossings by convolving the maximal responses r1 and r2 with the La-
placian of a Gaussian ∇ Gσ

2 ( =σ 2) and thresholding about the zero-
crossing for each time frame t=[1,n], see Fig. 1.

Step 4: Compute the Intersection of Constraints (IOC) from Z1 and Z2.
The idea underlying the IOC was introduced in the context of a

gradient approach to image motion processing (Fennema & Thompson,
1979), and later shown to be relevant to human perception (Adelson &
Movshon, 1982; Bowns, 1996; Bowns, 2001b; Bowns & Alais, 2006;
Quaia, Optican, & Cumming, 2016). The IOC is a solution to the
“aperture” problem, whereby one-dimensional moving images do not
have a unique velocity when viewed or processed through an aperture.
The IOC provides a solution to this problem by using two one-dimen-
sional varying images to produce a unique solution. In addition to
solving the aperture problem for one-dimensional images, the IOC
predicts the correct velocity for any moving image. Fig. 2 illustrates the
IOC using a velocity space diagram with two velocity vectors. Each
vector represents the velocity of a one-dimensionally varying periodic
pattern translating perpendicular to its own orientation. The angle of
each vector corresponds to the direction, the length corresponds to the
speed. The IOC is computed from the intersection of two lines drawn
perpendicular to each vector – the “constraint lines”. Fig. 1 shows this
for two displacements at = =t t1, 2. This solution has been applied to
velocity vectors derived from Gabor filters using “spatio-temporal en-
ergy” (Adelson & Bergen, 1985; Rust, Mante, Simoncelli, & Movshon,
2006). However, the vectors used in these papers are not invariant to
contrast, and the mechanism is not mathematically explicit. The vectors
proposed here are derived from the zero-crossings obtained in step 3,
Z1, Z2, that are invariant to contrast. The lines in Z1 and Z2 have the
same orientation of the filters responses r1, and r2, and act as the con-
straint lines for computing the IOC. The lines are displaced as a function
of the phase of the input from which they are extracted, and therefore
this displacement corresponds to the velocity vectors (or displacement
vectors). Intersections between Z1 and Z2 displaced over time corre-
spond to the velocity as determined by the IOC.
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