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A B S T R A C T

Background: Biomechanical characterization of human performance with respect to fatigue and fitness is re-
levant in many settings, however is usually limited to either fully qualitative assessments or invasive methods
which require a significant experimental setup consisting of numerous sensors, force plates, and motion de-
tectors. Qualitative assessments are difficult to standardize due to their intrinsic subjective nature, on the other
hand, invasive methods provide reliable metrics but are not feasible for large scale applications.
Methods: Presented here is a dynamical toolset for detecting performance groups using a non-invasive system
based on the Microsoft Kinect motion capture sensor, and a case study of 37 cancer patients performing two
clinically monitored tasks before and after therapy regimens. Dynamical features are extracted from the motion
time series data and evaluated based on their ability to i) cluster patients into coherent fitness groups using
unsupervised learning algorithms and to ii) predict Eastern Cooperative Oncology Group performance status via
supervised learning.
Findings: The unsupervised patient clustering is comparable to clustering based on physician assigned Eastern
Cooperative Oncology Group status in that they both have similar concordance with change in weight before and
after therapy as well as unexpected hospitalizations throughout the study. The extracted dynamical features can
predict physician, coordinator, and patient Eastern Cooperative Oncology Group status with an accuracy of
approximately 80%.
Interpretation: The non-invasive Microsoft Kinect sensor and the proposed dynamical toolset comprised of data
preprocessing, feature extraction, dimensionality reduction, and machine learning offers a low-cost and general
method for performance segregation and can complement existing qualitative clinical assessments.

1. Introduction

In oncologic practice, clinical assessments of performance stratify
patients into subgroups and inform decisions about the intensity and
timing of therapy as well as cohort selection for clinical trials. The
Karnofsky performance status (KPS) (Karnofsky and Burchenal, 1948)
and the ECOG/World Health Organization (WHO) performance status

(Oken et al., 1982) are two equally prevalent measures of the impact of
disease on a patient's physical ability to function. The Karnofsky score is
an 11-tier measure ranging from 0 (dead) to 100 (healthy) whereas the
ECOG score is a simplified 6-tier score summarizing physical ability,
activity, and self-care: 0 (fully active), 1 (ambulatory), 2 (no work ac-
tivities), 3 (partially confined to bed), 4 (totally confined to bed), 5
(deceased) (Oken et al., 1982).
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Although these metrics have been employed for many decades due
the practicality, standardization of patient stratification, and speed of
assessment, prospective studies have revealed inter- and intra-observer
variability (Péus et al., 2013), gender discrepancies (Blagden et al.,
2003), sources of subjectivity in physician assigned performance as-
sessments (Péus et al., 2013), and a lack of standard conversion be-
tween the two different scales (Buccheri et al., 1996). Nevertheless
performance status provides clinical utility because it is able to differ-
entiate patient survival (Kawaguchi et al., 2010; Radzikowska et al.,
2002). Consequently, the existing protocol of assigning a performance
status based on an inherently subjective assessment must be refined to
achieve a more objective classification of a patient's physical function.

In contrast to the qualitative and relatively practical nature of
physician assessments in the clinic, laboratory based invasive methods
have been developed to biomechanically quantify elements of human
performance. Many of these efforts have conducted gait analysis using
accelerometer, gyroscope and other types of wearable sensors and
motion capture systems (Tao et al., 2012) to detect and differentiate
conditions in patients with osteoarthritis (Turcot et al., 2008), neuro-
muscular disorders (Frigo and Crenna, 2009), and cerebral palsy
(Desloovere et al., 2006). The shortcomings of more extensive assess-
ments such as gait analysis include high cost, time required to perform
tests, and general difficulty in interpreting results (Simon, 2004). The
need for new technologies has been emphasized, particularly in the
oncology setting (Kelly and Shahrokni, 2016), to bridge the gap be-
tween subjective prognostication using KPS or ECOG performance
status and objective, yet cumbersome assessments of performance.

To this end, we propose a non-invasive motion-capture based per-
formance assessment system which can (i) characterize performance
groups using solely kinematic data and (ii) be trained to predict ECOG
scores by learning from various physicians in order to reduce bias and
intra-observer variability. The Microsoft Kinect is used as the motion-
capture device due to its low cost, and ability to extract kinematic in-
formation without the need of invasive sensors. We describe and test a
data processing and analysis pipeline using a cohort of 40 cancer pa-
tients who perform two clinically supervised tasks before and after
therapy at USC Norris Comprehensive Cancer Center, Los Angeles
County+USC Medical Center, and MD Anderson Cancer Center.

2. Methods

A set of dynamical analysis and machine learning tools is developed
to gather kinematic information from recordings of patients performing
tasks (Fig. 1) with the goal of validating the experiment design by
performing unsupervised classification of performance categories
(Fig. 1, step 4a), as well as supervised learning of physician assigned

ECOG performance status (Fig. 1, step 4b). Although we illustrate the
use of the toolset by exploring its application to an oncology cohort, the
following methods are general and may be used to characterize patient
performance in other settings.

2.1. Experimental setup

The Kinect depth sensor employs an infrared laser projector to de-
tect a representative skeleton composed of 25 anatomical points
(Fig. 2A) and recordings are post-processed using Microsoft Kinect SDK
(v2.0) to extract 3-dimensional displacement time series data for the 25
points. The Microsoft Kinect sensor is used in the clinical setting to
record patients performing two tasks: (i) task-1 requires patients, who
start from a sitting a position, to stand up and sit down on an adjacent
elevated medical table (Fig. 2B), (ii) task-2 requires patients to walk 8 ft
towards the Kinect sensor, turn, and return to the original position
(Fig. 2C). Both tasks are performed by each patient before and after a
therapy cycle, providing two samples for each task for a total of four
time series per patient. In both tasks the Kinect camera is secured to a
tripod on a table, and oriented so as to capture the entire figure. Details
about the data collection, skeletal data extraction, and experimental
setup are described by Nguyen and Hasnain in Nguyen et al. (2017).

2.2. Data preprocessing

Due to irregularities in the positioning of the Kinect camera across
different experiments, time series for task-2 is distorted such that a level
plane (e.g. clinic floor) appears sloped in the recordings. To resolve this,
an automated element rotation about the x-axis is performed. The angle
of distortion θ ranges between 5 and 20° in the time series studied. The
second preprocessing step involves manually segmenting the series to
trim irrelevant data in the beginning and end of each task while the
patient is stationary.

2.3. Feature extraction

The position vector, → = ⟨ ⟩r t x t y t z t( ) ( ), ( ), ( )i i i i for an anatomical
joint i is used to calculate its velocity magnitude,

=
→

v t r t( ) ‖ ̇ ( )‖i i (1)

and acceleration magnitude,

=
→

a t r t( ) ‖ ̈ ( )‖i i (2)

using the mean-value theorem. In the absence of distribution of mass
information, specific kinetic energy,

Fig. 1. Schematic of dynamical and machine learning analysis pipeline. Raw skeletal displacement data (step 1) from two clinically monitored tasks are preprocessed
(step 2) before feature extraction (step 3) and two mutually exclusive machine learning analyses are performed. Unsupervised clustering (step 4a) of patients in a low
dimensional space reveals the degree to which performance groups can by stratified using solely motion data. Supervised classification (step 4b) tests the ability of
motion data to evaluate patients similar to physician ECOG performance status.
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