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A B S T R A C T

Background: Traditional laboratory-based kinetic and kinematic gait analyses are expensive, time-intensive, and
impractical for clinical settings. Inertial sensors have gained popularity in gait analysis research and more re-
cently smart devices have been employed to provide quantification of gait. However, no study to date has
investigated the agreement between smart device and inertial sensor-based gait parameters during prolonged
walking.
Research question: Compare spatiotemporal gait metrics measured with a smart device versus previously vali-
dated inertial sensors.
Methods: Twenty neurologically healthy young adults (7 women; age: 25.0 ± 3.7 years; BMI: 23.4 ± 2.9 kg/
m2) performed a 6-min walk test (6MWT) wearing inertial sensors and smart devices to record stride duration,
stride length, cadence, and gait speed. Pearson correlations were used to assess associations between spatio-
temporal measures from the two devices and agreement between the two methods was assessed with Bland-
Altman plots and limits of agreement.
Results: All spatiotemporal gait metrics (stride duration, cadence, stride length and gait speed) showed strong
(r>0.9) associations and good agreement between the two devices.
Significance: Smart devices are capable of accurately reflecting many of the spatiotemporal gait metrics of in-
ertial sensors. As the smart devices also accurately reflected individual leg output, future studies may apply this
analytical strategy to clinical populations, to identify hallmarks of disability status and disease progression in a
more ecologically valid environment.

1. Introduction

Gait is an important clinical biomarker for disease status and quality
of life. In many neurological disorders and even healthy aging, the
ability to walk is one of the main determinants of disability status and
disease progression [1–3]. Self-selected gait speed, and the underlying
kinematics that contribute to gait speed such as stride length, are
functional vital signs for overall health in a variety of populations
[2,4–6]. The ability to extract these features of gait from simple mo-
bility measures is clinically relevant because it enables tracking of
disease progression or rehabilitation efficacy.

Traditional kinematic and kinetic gait outcomes are measured using
highly accurate lab-based systems such as 3-dimensional motion ana-
lysis and force plates [7,8]. However, these systems are impractical for
common clinical use because they are often difficult to access and re-
quire time intensive procedures, trained personnel, and large spaces.

Also, gait laboratories are limited by room size and the use of tread-
mills, which limits the study of real-world ambulation. Importantly, the
expense of these systems further reduces accessibility to gait labora-
tories.

To move away from laboratory settings, to improve the portability
of gait measures, and importantly to reduce costs associated with tra-
ditional lab-based systems, body-worn tri-axial accelerometers, or in-
ertial measurement units (IMU) such as the APDM Opal have gained
popularity in mobility research [9]. Inertial sensors offer valid and re-
liable quantification of gait [10,11]. However, even these portable
systems can be costly and require significant training, thus limiting
access for investigators, educators, and clinicians. Better access to in-
vestigators and clinicians therefore presents a potential opportunity to
improve quality of care.

Recently, smartphones have been employed to provide quantitative
assessments in gait laboratories and clinical settings [12]. The
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smartphone is a ubiquitous and practical platform that can be used to
measure acceleration in three axes (x, y, z). The built-in sensors can
detect the periodic changes in acceleration during gait cycle transitions.
Although research has been conducted assessing the capability of smart
devices to accurately measure acceleration during a sit-to-stand [13],
timed-up-and-go test [14], or short bouts of walking (≤10m) [15]
limited research exists with regard to continuous walking, such as the
widely used 6-minute walk test (6MWT). To our knowledge, only Ca-
pela et al. [16] compared the distance covered and number of steps
assessed with a BlackBerry smartphone application to video during a 2-
minute walk test. In a subsequent study, the same authors demonstrated
the ability of the smartphone to assess clinically relevant gait metrics
during a 6MWT [17]. Despite promising results regarding the accuracy
of the smartphones’ internal accelerometer, neither study compared the
gait metrics analyzed from the smartphone to a validated and reliable
gait measurement system and instead used video for comparison. As a
consequence, the gait analysis was limited to number of steps, cadence
and distance covered, lacking comparisons of other widely used gait
variables.

Thus, the purpose of this project was to compare spatiotemporal gait
measures as detected by a smart device versus a previously validated
and reliable inertial sensor/software system, the APDM Opal wireless
inertial sensors in conjunction with APDM Mobility Lab software
(Version 2).

2. Methods

Twenty neurologically healthy young adults provided written in-
formed consent and were oriented to the procedures. The procedures
were approved by the Colorado State University Institutional Review
Board, in accordance with the Declaration of Helsinki.

2.1. Screening

Participants were screened by the same investigator and were ex-
cluded if they had any history of a medical condition that would impair
cognition or mobility, any injuries or surgeries that would affect their
gait within the prior 6 months, any neurological disease, or were out-
side the ages of 18–35.

2.2. 6-min walk test

Participants wore six wireless inertial sensors (APDM Opal) placed
on the sternum, on each wrist, the lower back (at the level of L5), and
on the dorsum of each foot. The sensors were attached to the respective
body part using elastic straps adjusted to fit snugly and to reduce un-
wanted movement, but not too tight to be uncomfortable for the par-
ticipant. The participants also wore two smart devices strapped just
proximal to the lateral malleolus using an elastic strap, Velcro, and two
smaller reinforcing straps (Fig. 1). Subsequently, participants per-
formed a 6MWT in a linoleum-tiled hallway with floor tape placed 30m
apart. Participants did not wear shoes and were instructed to walk at
their self-selected pace and turn as naturally as possible. At the end of
the 6MWT total distance covered was recorded based on the number of
lengths completed plus the remaining distance.

2.3. APDM Opal

Inertial sensors (Opal, APDM Inc., Portland, OR) have been pre-
viously found to provide valid and reliable (r> 0.9 for all metrics
compared, relative to an instrumented force plate treadmill; intraclass
correlation coefficient> 0.9) [10] quantification of mobility measures
in healthy and clinical populations [18–21]. The accompanying soft-
ware, Mobility Lab (Version 2) provides a number of gait metrics in-
cluding but not limited to: cadence (steps/min), gait speed (m/s), stride
length (m), step duration (s), and stride duration (s).

2.4. Smart device

A smart device (iPod Touch 5th Generation, Apple, Inc., CA), run-
ning the Sensor Data application (Wavefront Labs), was used to detect
heel strikes. The application continuously sampled tri-axial acceleration
from the internal micro electro-mechanical systems (MEMS) accel-
erometer. All heel strike acceleration peaks during walking were readily
visually identifiable and well within the 8 g maximum of the smart
device’s internal accelerometer. Accelerometer positioning and axes
orientation are shown in Fig. 1A.

2.5. Data processing

Upon completion of the 6MWT, the Opal sensors wirelessly
streamed data to a laptop using the Mobility Lab software. Wireless
sensor data was recorded at a sampling rate of 128 Hz and did not
undergo additional processing. Instead, the Mobility Lab software au-
tomatically calculated gait metrics. For the smart device, data was
sampled via the Sensor Data application at 100 samples/s, saved as a
text file, and wirelessly transferred to a computer. Data from the left
and right leg smart device was exported separately and then merged
(time-aligned) into one Spike 2 (Cambridge Electronic Design Limited,
Version 7.18) data file for further analysis.

2.6. Calculation of gait features from smart device data

To calculate the gait variables from the smart device, the peak de-
tection tool in Spike 2 was used to identify and record a time stamp the
gait cycle of each leg (Fig. 1B). Detection of peaks was accomplished
with user-entered amplitude threshold and time step values. The peak
detection tool algorithm automatically detects x-axis acceleration peaks
above the threshold after each time step. The threshold and time step
values were entered based on brief visual inspection of the data. To
ensure accurate algorithm detection of the peak x-axis acceleration
(heel strike) of each gait cycle, all data was visually inspected after it
was processed. For clearly identifiable peaks which were not detected
based on acceleration threshold, a time stamp was manually added. For
cases of mistaken peak detection, the time stamp was removed. Manual
addition/removal was based on the obvious features of the repetitive
gait cycle pattern and typically involved editing of less than 2% of the
trial. Previous studies with the Opal sensors have excluded gait cycles
before and after a turn [16,22] in order to account for the reduction in
gait speed and stride length. We therefore manually removed the two
gait cycles associated with a turn from the smart device data to allow
for a fair comparison between devices. These gait cycles were not in-
cluded in the subsequent analysis. Turns were visually identified and
confirmed using the pitch derived from the gyroscope. The individual
time stamps and their associated gait cycles were carefully visually
inspected and exported for analysis.

Stride duration (s) was calculated by subtracting the time stamp of
one gait cycle from its preceding gait cycle. Step duration was derived
by dividing stride duration by two. Based on each individual stride
duration, cadence (steps/min) was calculated. We divided each in-
dividual stride duration by 60 s, calculated the average, and subse-
quently added both legs to derive cadence. To compare additional gait
features to the inertial sensors, we calculated gait speed (distance
covered/360 s; m/s) independent from the output of the smart device.
By multiplying gait speed and mean stride duration, mean stride length
(m) was derived. The same formulas were applied to produce gait
variables for each leg.

2.7. Statistical analysis

All statistical analysis was completed using R software (Rstudio,
Boston, MA). Pearson correlations were used to determine the asso-
ciation between cadence, stride length, stride duration and gait speed
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