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In an influential paper, Goldenberg, Libai, and Muller (2010) use an agent-based model to demonstrate that
network externalities have a “chilling” effect on new product diffusion, i.e. they slow down newproduct adop-
tion since many consumers wait before enough people have adopted. They perform their simulations using
theoretical Moore lattices as the underlying social network of consumers. However, it has been demonstrated
in other contexts that network structures can significantly affect the dynamics of new product diffusion, and
hence it is worth investigating the same considerations for network externalities as well. I use the diffusion
model of Goldenberg et al. (2010) to perform simulations on actual social networks to demonstrate that the
chilling effect of network externalities is somewhat offset by increasing network size and average degree of
the nodes, but accentuated by increased clustering in the network. My simulations also reveal that the diffu-
sion model used by Goldenberg et al. (2010) does not have the chilling effect tautologically “baked” into it;
rather network externalities do tend to slow down new product adoption most of the time, but not always.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In an influential paper, Goldenberg et al. (2010) (henceforth
GLM10) challenge the conventional wisdom that network externali-
ties speed up the diffusion of new goods. Using an agent-based
model, they demonstrate that network externalities in fact introduce
a chill in the diffusion process, i.e. they initially slow down adoption,
since many consumers wait before enough people have adopted.
GLM10 use simple Moore neighborhoods for their simulations; a
good starting point for simulating complex diffusion processes. How-
ever, it has been demonstrated in many cases that the underlying net-
work structure significantly influences the dynamics of diffusion
processes (Libai, Muller, & Peres, 2013; Rahmandad & Sterman,
2008). Thus, in the spirit of Rand & Rust (2011), given the recent avail-
ability of real world network data, it is worth investigating how their
properties could influence the so-called chilling effect of network
externalities, an issue not addressed by GLM10. In this paper, I use
GLM10's model and perform their simulations on Moore neighbor-
hoods and seven real world network data sets. The simulations
show that the chilling effect of network externalities is somewhat off-
set by increasing network size and average degree of the nodes, but
accentuated by increased clustering. They also reveal that under cer-
tain conditions, though rare, network externalities can actually
speed up the diffusion process, and it is possible that the net present
value of a new product with network externalities is higher than if
there were no network externalities. This finding addresses the

critique of GLM10 that their threshold-based model has a chilling
effect “baked” into it and bolsters its validity.

2. Diffusion model

Here, I briefly describe the diffusionmodel used by GLM10. Consider
a market (network) of N individuals (nodes) connected through inter-
personal ties. Once a new product is released here, each individual i
may adopt the product either through marketing efforts or peer influ-
ence. In the absence of network externalities, an individual adopts the
good at time t with a probability

pi tð Þ ¼ 1− 1−að Þ 1−bð Þmi tð Þ ð1Þ

where a is the probability of adopting due to external influences like ad-
vertising, b is the probability of adopting due to peer effects, andmi(t) is
the number of i's acquaintanceswhohave adopted the goodby time t. In
the presence of network externalities, every individual is assumed to
have a personal threshold — a minimum number of adopters across
the network that would be required for her to consider adopting the
product. Here, the above equation is modified as

pi tð Þ ¼
1

0

− 1−að Þ 1−bð Þmi tð Þ if χ tð Þ=NNhi
otherwise

8<
: ð2Þ

where χ(t) is the total number of adopters at time t in the entire network
and hi is individual i's personal threshold. hi is assumed to be normally
distributed with mean h and standard deviation σ, and an individual
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with hi b 0 is assumed to have a personal threshold of zero. Each diffu-
sion process is characterized by its net present value (NPV) with a
discount rate δ.

NPV ¼
X
t

salest
1þ δð Þt ð3Þ

3. Network data and simulations

Using GLM10's model, I perform their simulations on the following
network structures1: the theoretical two-dimensional Moore neigh-
borhood with 625 nodes (a replication of GLM10), Rovira i Virgili
University's (URV) email network (Guimera, Danon, Diaz-Guilera,
Giralt, & Arenas, 2003), a Facebook ego network (McAuley &
Leskovec, 2012), a jazz musicians' network (Gleiser & Danon, 2003),
an ego network from an online social network (OClinks) (Opsahl &
Panzarasa, 2009), a UK university faculty network (Nepusz, Petróczi,
Négyessy, & Bazsó, 2008), an ego network from Youtube (Libai et al.,
2013) and the Pretty Good Privacy (PGP) online file sharing network's
giant component (Boguña, Pastor-Satorras, Díaz-Guilera, & Arenas,
2004). Fig. 1 illustrates these networks, which differ in their size and
other aggregate properties. Apart from network size, I consider two
important aggregate properties, the average degree of the nodes and
the transitivity (clustering) coefficient.

The degree of a node in an undirected network is defined as the
number of edges originating in that node. The average degree then is
the mean of the degrees of all the nodes in the network.

Clustering in a network is the tendency of the nodes to group togeth-
er. Transitivity is defined as the probability of node A being connected to
node C in a given network if A is connected to B and B is connected to C
(Newman, 2003) and given by the relation

C ¼ 3
number of triangles in network

number of connected triples of vertices
: ð4Þ

Table 1 lists the different properties of these networks.
I perform a series of full factorial-design simulation experiments2 by

varying each of a, b, h and σ/h over five levels for each network. Though
b may be network-specific, I use the same parameter ranges as GLM10
for ease of replication.3 This yields 625 simulation runs for each struc-
ture and 5000 runs overall. The 625 simulation runs corresponding to
the Moore neighborhood represent a simple replication of GLM10,
while the entire data generated by the 5000 simulations allow us to in-
vestigate how network structure influences diffusion processes with
and without network externalities. Table 2 presents the diffusion
model parameters used in the simulations.

Like GLM10, I consider the ratio of NPV with network externalities
(using the threshold diffusionmodel) toNPVwithout network external-
ities to be the focal dependent variable in characterizing the chilling ef-
fect of network externalities. Fig. 2 presents histograms of NPV ratios
obtained in the simulations. Unlike GLM10 who obtain only ratios less
than one in their simulations, one may observe some rare cases where
the NPV ratio exceeds one, a consideration that I will revisit in the fol-
lowing section. One may also observe that in some networks, the distri-
bution of NPV ratios is more to the right than in Moore neighborhoods,
with many more instances occurring close to one.

Table 3 presents the standardized coefficients of OLS regressions
with the NPV ratio as the dependent variable and the diffusion model
parameters and network properties as independent variables. The first

column represents a simple replication of GLM10 on Moore neighbor-
hoods, and the results are in close agreement. The second column pre-
sents results from 5000 simulations. All diffusion model parameters

1 I wish to thank Barak Libai for providing the Youtube data and all other authors men-
tioned here for making available their data on public repositories.

2 All simulations and analyses were coded in R, using the igraph package (Csárdi &
Nepusz, 2006) for analyzing network properties.

3 I thank an anonymous reviewer for pointing this out.

Fig. 1. Illustrations of different networks used in the simulations. (a) Two-dimensional
Moore neighborhood with 625 nodes. (b) Email network at Rovira i Virgili University
(URV) in Spain. (c) Facebook ego network. (d) Jazz musicians' network. (e) OClinks— on-
line social network. (f) UK university faculty network. (g) Youtube ego network. (h) Giant
component of the Pretty-Good-Privacy (PGP) online file sharing network.

Table 1
Properties of networks used in simulations.

Network Source Size Average
degree

Transitivity

Moore neighborhood GLM10 — theoretical
network

625 7.53 .44

URV email network Guimera et al. (2003) 1133 9.62 .17
Facebook ego network McAuley and

Leskovec (2012)
4039 43.69 .52

Jazz musicians'
network

Gleiser and Danon
(2003)

199 27.56 .52

OClinks — online social
network

Opsahl and Panzarasa
(2009)

1899 14.57 .06

UK faculty network Nepusz et al. (2008) 81 14.25 .47
Youtube ego network Libai et al. (2013) 4160 8.47 .02
PGP giant component Boguña et al. (2004) 10,680 4.55 .38
Mean 2852 16.28 .32
Standard deviation 3316 12.28 .20
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