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a  b  s  t  r  a  c  t

Cognitive  architectures  (e.g., ACT-R)  have  not  traditionally  been  used  to understand  intuitive  decision-
making;  instead,  models  tend  to be designed  with  the  intuitions  of their  modelers  already  hardcoded
in  the  decision  process.  This  is  due  in  part  to  a fuzzy  boundary  between  automatic  and  deliberative
processes within  the architecture.  We  argue  that  instance-based  learning  satisfies  the  conditions  for
intuitive  decision-making  described  in  Kahneman  and  Klein  (2009), separates  automatic  from  delibera-
tive processes,  and  provides  a general  mechanism  for the  study  of  intuitive  decision-making.  To  better
understand  the  role  of the  environment  in decision-making,  we describe  biases  as  arising  from  three
sources:  the  mechanisms  and  limitations  of  the  human  cognitive  architecture,  the  information  structure
in the  task  environment,  and  the  use  of  heuristics  and  strategies  to adapt  performance  to  the  dual  con-
straints  of cognition  and environment.  A unified  decision-making  model  performing  multiple  complex
reasoning  tasks  is described  according  to this  framework.

©  2014  Society  for Applied  Research  in Memory  and  Cognition.  Published  by  Elsevier  Inc.  This is an
open  access  article  under  the  CC  BY-NC-ND  license  (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

This article describes how computational models of intuitive
decision-making are expressed within the constraints of the ACT-
R cognitive architecture (Anderson et al., 2004). These models are
noteworthy for their ability to explain a variety of heuristics and
biases in terms of the processes and representations that produce
them. These phenomena have largely been captured and defined
as results of experimental manipulations (Kahneman & Tversky,
1996) but not in terms of process models justified by a cognitive
architecture (Dimov, Marewski, & Schooler, 2013). A concern of
modeling intuitive decision-making behavior using cognitive archi-
tectures is confounded by the explicit decisions encoded by the
modelers. This criticism can be described as: instead of model-
ing intuitive behavior per se, cognitive models make explicit the
intuitions of their designers (Cooper, 2007; Lewandowsky, 1993;
Schultheis, 2009; Cooper, 2007; Lewandowsky, 1993; Schultheis,
2009; Shallice & Cooper, 2011). We  address this criticism by
showing that the instance-based learning mechanisms in the
ACT-R cognitive architecture (Gonzalez, Lerch, & Lebiere, 2003)
exhibit the characteristics of intuitive decision-making as described
in Kahneman and Klein, (2009), and provide a clearer distinc-
tion between automatic and implicit (System 1) processes and
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deliberative and explicit (System 2) processes. In addition, we
specifically address this modeler selection criticism by showing that
the explicit strategies of the models instantiate the theories of the
model designer and thus are a mechanism for theory evaluation
rather than a confounding factor in model development.

In making this argument, we recommend adopting a tripartite
explanation of decision-making and biases that illustrates the crit-
ical role of the task environment in the decision-making process.
We argue that decision-making should be understood in terms of:
(1) the mechanisms and limitations of the architecture; (2) the
information structure in the task environment; and (3) the use
of heuristics and strategies to adapt performance to the dual con-
straints of cognition and environment. From examples of existing
models, we show that simulating behavior within a cognitive archi-
tecture is a useful methodology for the study of the mechanisms,
variables, and time-course in complex decision-making processes
that are impossible in experimentation due to exploding combina-
torics.

1. What is intuitive decision-making?

Simon (1992) characterized intuitive decision-making skill as
“nothing more and nothing less than recognition” (p. 155). In
their seminal work on expertise, Chase and Simon (1973) iden-
tified that chess experts require upwards of a decade of study
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to retain 50,000–100,000 distinct and rapidly accessible patterns
of chess positions. Intuitive decision-making has been studied in
both the naturalistic decision-making and heuristics and biases lit-
erature, with the former generally focused on the successes of
intuitive reasoning, while the latter generally focused on its fail-
ures (Kahneman & Klein, 2009). A distinguishing feature of intuitive
decision-making is that a single plausible solution rapidly ‘comes
to mind’ in its entirety without explicit or conscious awareness of
the causal factors entering into the decision (i.e., not being con-
sciously derived in a piecemeal, step-by-step, or in a ‘deliberative’
manner; Newell & Simon, 1972; Simon, 1995). As such, intuitive
reasoning is considered System 1. For example, Klein, Calderwood,
and Clinton-Cirocco (1986) found that fire marshals tended to make
rapid decisions by generating a single alternative, mentally simu-
lating its outcome, and either making minor revisions or adopting
the next closest alternative. Effectively, fire marshals were pattern-
matching based on their prior experiences. This strategy has been
termed recognition-primed decision-making.

Conversely, deliberative decision-making is often characterized
as strategic, effortful, slow, and rule-oriented (Klein, 1998), and as
such is considered System 2 thinking (Kahneman & Frederick, 2005;
Stanovich & West, 1999). Interestingly, the act of verifying an intu-
ition is generally seen as optional, effortful, and thus a function of
System 2 (Kahneman & Klein, 2009).

In order to gain intuitive expertise, two conditions first need be
met. The first condition is that people receive extensive practice in
a task environment that is sufficiently stable and provides causal
or statistical cues/structures that may  at least theoretically be
operationalized (Hogarth, 2001; Hogarth, 2001; Brunswik, 1957).
This need not be deterministic (e.g., playing poker is a proba-
bilistic but stable environment; Kahneman & Klein, 2009). The
second condition is that there must be sufficient feedback from
the task environment which provides people an opportunity to
learn the relevant cues/structures. In other words, feedback must
be sufficient to generate a relevant internal problem space. This
requirement of feedback and interaction with the task environment
drove our adoption of the tripartite level of description.

2. Why  use a cognitive architecture?

Cognitive architectures model behavior using a set of com-
mon  mechanisms and processes (i.e., the architecture) whose goal
is to not only explain human behavior, but the underlying struc-
tures and representations subsuming cognition as a whole. These
mechanisms should be both psychologically and neurally plausi-
ble to account for human behavior. This level of description is not
generally captured by either mathematical or informal models of
decision-making. Before getting into further details of mechanisms,
models, and results; there is an important argument to be made for
the role of cognitive architectures in general, which is best charac-
terized by Herbert Simon (in 1971, no less):

The programmability of the theories is the guarantor of their
operationality, an iron-clad insurance against admitting magical
entities into the head. A computer program containing magical
instructions does not run, but it is asserted of these information-
processing theories of thinking that they can be programmed
and will run. They may  be empirically correct theories about
the nature of human thought processes or empirically invalid
theories; [but] they are not magical theories. (p. 148)

In modern terms, simulations using a cognitive architecture
provide a falsifiable methodology for the study of cognitive pro-
cesses and representations, a particularly important characteristic
when studying largely implicit processes such as intuitive decision-
making. They serve several theoretical functions including:

organizing and relating a substantial number of cognitive mech-
anisms, making testable predictions, and explaining the cognitive
processes underlying human performance. In many cases, cognitive
models can perform tasks too complex to analyze with traditional
experimentation due to the combinatorics of the possible decision
space. As will be described, a single ACT-R model has explained
anchoring and adjustment, confirmation, and probability match-
ing biases across a range of complex geospatial intelligence tasks
using a common instance-based learning approach (Lebiere et al.,
2013). Similarly, Marewski and Mehlhorn (2011) were able to spec-
ify 39 process models studied in decision-making using a smaller
subset of 5 ACT-R models. In short, cognitive architectures allow for
theories to be constrained by scientifically established mechanisms
and (hopefully) easily describable processes.

This is not to argue that cognitive architectures are a panacea
for studying decision-making (or psychology in general), but we
do claim that they are a valuable tool in the generation and explo-
ration of theories (c.f., models) which may  be too complex for
traditional piecemeal experimental methods. In particular, intu-
itive decision-making tends to be cognitively ‘opaque’ with little
observable evidence, and what little evidence there is coming from
highly fallible introspection. As such, many descriptions of intuitive
decision-making are inherently qualitative or are characterized
using relatively simple experimental results (Dimov et al., 2013).
An advantage of cognitive architectures is not only their ability
to objectively explain accuracy and response times in terms of
the operation of both symbolic elements and their sub-symbolic
activation strengths (and in the case of ACT-R, links to neural struc-
ture), but also the ability to go ‘under the hood’ and actually look
inside the model to explicitly examine causal processes. Such com-
putational cognitive models make testable predictions of what is
going on inside the mind of someone performing intuitive decision-
making.

One measure for validating inside the mind predictions is to per-
form model tracing. Model tracing is a technique where a model
is forced to respond with some or all of the same values as a
human participant, and then the internal states of the model are
examined to determine the influence of these ‘forced’ decisions. By
examining the commonalities between the model’s internal states
and human behavior, modelers are potentially able to make causal
claims about the nature of mental processes within participants;
that is, to explain how human performance is produced by vari-
ous cognitive mechanisms and their interaction. This performance
includes traditional measures such as accuracy and response time,
but also predictions of fMRI bold response for specific brain areas
associated with the functional modules of the cognitive architec-
ture (Anderson, 2007).

The benefits of cognitive architectures can be seen as bridging
or synthesizing formal mathematical theories (such as Bayesian
modeling) and knowledge-level strategies (e.g., heuristics). As such,
cognitive architectures act as a link between Marr’s (1982) compu-
tational and algorithmic levels, with the benefits of a corresponding
bridge to the physical level (i.e., neural) implementation. Bayesian
models belong to a broad class of abstract models that formally
(i.e., mathematically) explain human behavior in terms of processes
computing probabilities over a set of possible decisions. While
Bayesian (and related probabilistic) models do provide an expla-
nation of behavior, it is not generally accepted to be a cognitively
(i.e., psychologically) plausible one as the underlying mechanisms
driving the processes are somewhat vague or not tractable (Bowers
& Davis, 2012). As such, Bayesian theories belong at the computa-
tional level of Marr’s hierarchy. This is not a criticism specific to
Bayesian models, but can also be applied to other mathematical the-
ories such as prospect theory (Kahneman & Tversky, 1979), decision
theory (Berger, 1985), and quantum probability theory (Busemeyer,
Pothos, Franco, & Trueblood, 2011). Similarly, explanations in the
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