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Rationale and Objectives: Quantitative imaging biomarkers (QIBs) are becoming increasingly adopted into clinical practice to monitor
changes in patients’ conditions. The repeatability coefficient (RC) is the clinical cut-point used to discern between changes in a biomarker’s
measurements due to measurement error and changes that exceed measurement error, thus indicating real change in the patient. Imaging
biomarkers have characteristics that make them difficult for estimating the repeatability coefficient, including nonconstant error, non-
Gaussian distributions, and measurement error that must be estimated from small studies.

Methods: We conducted a Monte Carlo simulation study to investigate how well three statistical methods for estimating the repeat-
ability coefficient perform under five settings common for QIBs.

Results: When the measurement error is constant and replicates are normally distributed, all of the statistical methods perform well.
When the measurement error is proportional to the true value, approaches that use the log transformation or coefficient of variation
perform similarly. For other common settings, none of the methods for estimating the repeatability coefficient perform adequately.

Conclusion: Many of the common approaches to estimating the repeatability coefficient perform well for only limited scenarios. The
optimal approach depends strongly on the pattern of the within-subject variability; thus, a precision profile is critical in evaluating the
technical performance of QIBs. Asymmetric bounds for detecting regression vs progression can be implemented and should be used
when clinically appropriate.
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INTRODUCTION

A s quantitative imaging biomarkers (QIBs) become in-
creasingly adopted into clinical practice for diagnosis,
prognosis, and disease monitoring, it is critical that

clinicians be able to interpret them properly. Clinicians must
be able to discern between changes in a biomarker’s mea-
surements that are expected because of measurement error by
the imaging system and changes that exceed measurement error
and thus indicate a real change in the patient.

Studies of the technical performance of QIBs, particularly
studies of their repeatability, are used to help radiologists in-
terpret change. Organizations such as the Quantitative Imaging
Biomarker Alliance (QIBA) conduct groundwork studies to
estimate biomarkers’ performance. They also perform meta-
analyses to summarize biomarkers’ performance over multiple
published studies (1,2). From these studies of repeatability, in-
vestigators calculate a cut-point, or threshold, for discerning
when a measured change is attributable to measurement error
vs when the measured change should be interpreted as a real
change in the patient, with some stated degree of confi-
dence (3–5). For illustration, when measuring the change in

volume of a pulmonary lesion from baseline, a measured change
<25% might be considered purely measurement error, whereas
a measured change exceeding 25% might be considered a real
change, with 95% confidence (6).

In this paper, we present the results of a Monte Carlo sim-
ulation study investigating how well these clinical cut-
points perform with respect to their declared confidence levels.
We consider scenarios common for imaging biomarkers, in-
cluding nonconstant measurement error, non-Gaussian
distributions, and small technical performance studies from
which the cut-points are estimated. We consider three sta-
tistical methods for estimating the cut-point. We investigate
the performance of the cut-points when no real change has
occurred and also when a real change has occurred (both re-
gression and progression). Based on these findings, we provide
recommendations for how best to estimate the cut-point for
interpreting change in QIBs.

METHODS

Defining Change

There are three common ways in which change in a quan-
titative biomarker can be defined. Let Yib be the biomarker
measurement taken on the ith subject at baseline and let Yit

be the biomarker measurement taken on the same subject at
some follow-up timepoint. Table 1 summarizes three ways
to define change: (1) difference from baseline expressed in
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the original units of the biomarker, d̂; (2) percentage change
from baseline, %d̂b; and (3) percentage difference in the two
measurements, %d̂mean. We will examine cut-points for each
of these in our study.

Methods for Estimating Cut-Points From Technical
Performance Studies

The biomarker measurements are assumed to be a function
of the true biomarker value, with some possible bias and mea-
surement error. Let Xik be the true biomarker value at timepoint
k for subject i. The biomarker measurement is written as a
linear function of the true value (3):

Y Xik o ik ik= + +β β1 ε , (4)

where βo is the fixed bias, β1 is the proportional bias, and εik

is the measurement error. It is often assumed that the mea-
surement error is constant and follows a normal distribution,
εik N~ ,0 2σ( ). We vary these assumptions in our Monte
Carlo simulation study to consider scenarios typical in imaging.
The measurement error, σ2, is often referred to as the within-
subject variance. Its square root is referred to as the within-
subject standard deviation (wSD) (3,4).

To estimate the cut-point at which changes in the biomarker
measurements can be considered real changes, technical per-
formance studies are conducted to estimate σ2, the within-
subject variance. These studies, often called test-retest studies,
are designed so that a subject is imaged in the same fashion
on multiple occasions over a short period of time to ensure
that no biological change has occurred (4). As it is often dif-
ficult to justify imaging a subject multiple times over a short
period of time (often the same day), these studies are usually
limited to two replicates per subject (3,4). Obuchowski and
Bullen (7) recommended that at least 35 test-retest subjects
are needed for providing 95% coverage of the true biomarker
value of future subjects. For a test-retest study with N sub-
jects and two replicates per subject, an estimate of the within-
subject variance is

ˆ ,σ 2
1 2

2

1
2= { }−

=∑ Y Y Ni ii

N
(5)

where Yik denotes the biomarker measurement for the kth rep-
licate on the ith subject. Assuming constant within-subject

variance and normality, the cut-point associated with 95% con-
fidence is then

RC� = ×1 96 2 2. ˆ ,σ (6)

where RC is the repeatability coefficient, or the least signif-
icant difference between two repeat measurements taken under
identical conditions (3–5,8). Changes in the biomarker that
exceed +RC or are less than −RC are considered real changes
(not as a result of just measurement error), with 95% confi-
dence. Specifically, measured differences <−RC are considered
true regression, whereas measured differences >+RC are con-
sidered true progression. We refer to this simple approach as
Approach 1 (see first row of Table 2).

The cut-points in Approach 1 are symmetric, such that a
similar magnitude of progression or regression is considered
true change (Fig 1). Consider an example for lung tumor
volume measurements. From a previous technical perfor-
mance study, the RC was estimated as 150 mm3 (ie, σ̂ = 54).
Now, suppose that in a future subject the measured volume
of a lung nodule is 500 mm3 at baseline, and after treatment,
the measured volume is 300 mm3. The measured change is
(300–500), or a 200 mm3 reduction in volume. Is this dif-
ference due to measurement error or should we conclude
that a real change has occurred? Because − < −200 RC� , we
would conclude that a real change has occurred with 95%
confidence.

It is common for biomarkers’ wSD to be correlated with
the magnitude of the biomarker (8). When there is a rela-
tionship between the wSD and the magnitude of the
measurements, there are two common approaches to mini-
mizing this relationship (2,3,8): (1) within-subject coefficient
of variation (wCV) approach and (2) log transformation. These
approaches lead to symmetric and asymmetric intervals, re-
spectively (Fig 1). We discuss these approaches next.

From the technical performance study, the wCV is esti-
mated by first calculating the mean of the replicate
measurements for each of the N subjects. Denote the mean
for the ith subject as Y Y Yi i i= +( )1 2 2. The estimate of the
wCV2 is

wCV Y Y Y Ni i ii

N� 2
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The %RC is estimated as

% .RC wCV� �= ×1 96 2
2

and the symmetric cut-points are defined as Approach 2 in
Table 2. Note that %RC could be used to define a cut-
point for the percentage change from baseline (%d̂b) or for
the percentage difference (%d̂mean). These are presented as Ap-
proaches 2A and 2B in Table 2, respectively.

In the log transformation approach, the variance of the log-
transformed data is calculated as (8,9)
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TABLE 1. Three Definitions of Change in QIBs*

Difference from baseline d̂ Y Yit ib= ( )− (1)
Percentage change from

baseline
%d̂ Y Y Yb it ib ib= ( ) ×− 100 (2)

Percentage difference %d̂
Y Y

Y Y
mean

it ib

ib it

= ( )
+( )

×−
2

100 (3)

QIBs, quantitative imaging biomarkers.
* Positive values are indicative of an increase in the biomarker value

at follow-up (referred to here as “progression” without loss of gen-
erality) and negative values are indicative of a decrease in the
biomarker value at follow-up (“regression”).
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