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A B S T R A C T

Objectives: To evaluate a new image marker that retrieves information from computed tomography (CT) density
histograms, with respect to classification properties between different lung parenchyma groups. Furthermore, to
conduct a comparison of the new image marker with conventional markers.
Materials and methods: Density histograms from 220 different subjects (normal= 71; emphysema=73; fi-
brotic= 76) were used to compare the conventionally applied emphysema index (EI), 15th percentile value (PV),
mean value (MV), variance (V), skewness (S), kurtosis (K), with a new histogram’s functional shape (HFS)
method. Multinomial logistic regression (MLR) analyses was performed to calculate predictions of different lung
parenchyma group membership using the individual methods, as well as combinations thereof, as covariates.
Overall correct assigned subjects (OCA), sensitivity (sens), specificity (spec), and Nagelkerke’s pseudo R2 (NR2)
effect size were estimated. NR2 was used to set up a ranking list of the different methods.
Results: MLR indicates the highest classification power (OCA of 92%; sens 0.95; spec 0.89; NR2 0.95) when all
histogram analyses methods were applied together in the MLR. Highest classification power among individually
applied methods was found using the HFS concept (OCA 86%; sens 0.93; spec 0.79; NR2 0.80). Conventional
methods achieved lower classification potential on their own: EI (OCA 69%; sens 0.95; spec 0.26; NR2 0.52); PV
(OCA 69%; sens 0.90; spec 0.37; NR2 0.57); MV (OCA 65%; sens 0.71; spec 0.58; NR2 0.61); V (OCA 66%; sens
0.72; spec 0.53; NR2 0.66); S (OCA 65%; sens 0.88; spec 0.26; NR2 0.55); and K (OCA 63%; sens 0.90; spec 0.16;
NR2 0.48).
Conclusion: The HFS method, which was so far applied to a CT bone density curve analysis, is also a remarkable
information extraction tool for lung density histograms. Presumably, being a principle mathematical approach,
the HFS method can extract valuable health related information also from histograms from complete different
areas.

1. Introduction

With the recent introduction of radiomics [1,2] into the field of
radiology reliable techniques for quantitative image markers obtained
additional interest. The motivation to explore new image features is to
enrich conventional methods to maximize information extraction from
image data, so that additional knowledge is generated, which can po-
tentially improve the diagnosis accuracy for patients. In the diagnostics
of interstitial lung diseases, many image markers analyze frequency
distributions of Hounsfield units (HU) of computed tomography (CT)
images. Such markers are for instance the emphysema index (EI) [3–7],
percentile value (PV) [8,9], mean value (MV), variance (V), skewness
(S), and kurtosis (K) [10–12]. A recently developed density curve
analysis method is the histogram’s functional shape (HFS) method,

which describes the shape of a transformed CT density histogram by
using nonlinear function fits [13]. This HFS method was applied so far
in an age-at-death estimation project in forensic medicine, were it ap-
peared as a very helpful tool to extract age related information from CT
density curves of skull caps.

In this study, it is at first investigated if the HFS method can retrieve
useful information of CT lung density curves that enable a classification
between the lung morphology groups normal, emphysema, and fibrosis.

At second, an image marker competition is set up where the EI, PV,
MV, V, S, K, and HFS methods are evaluated with respect to their
classification capabilities to attribute subjects to one of the three named
lung parenchyma groups. Multinomial logistic regression (MLR) is used
to calculate the classification predictions for the different lung mor-
phology groups, where the covariates of the MLR are based on the EI,
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PV, MV, V, S, K, and HFS results [13–18]. The degree of correct or false
attributed subjects, sensitivity, and specificity are estimated. A judg-
ment of the classification properties of the various methods is per-
formed, evaluating 21 different MLR models, which used the individual
image marker methods, as well as combinations thereof, as covariates
in the MLR. Results of a “test” (n= 158 subjects) and a “validation
group” (n= 62) are compared on the basis of the ranking performance
in the MLR model competition.

The hypothesis behind this study is that the HFS method is capable
to improve the information extraction from CT density curves in the
context of interstitial lung diseases. It is assumed that the rather novel
HFS concept enriches existing image marker concepts, and that it can
be used as helpful additional radiomic image marker. Twenty one MLR
model calculations are reported in detail so that the reader can judge
the classification properties of each model precisely. Seven MLR model
calculations show the seven different image markers studied in-
dividually; 14 MLR models present combinations of image marker
evaluations, so that potential synergistic effects between image markers
can be found. Hence, the general purpose of this study is the im-
provement of numerical tools that can extract health related informa-
tion from density histograms and that can serve as image markers in
radiomics analyses.

2. Materials and methods

2.1. Patients

The retrospective study was approved by the local ethic committee
of the University. Written consent of patients was waved. Patient data
were selected from January 2011 to April 2016 using the University’s
Radiological Information System and Picture Archiving and
Communication System. A database search was performed to reveal 158
patients of a “test group‘ (98 men; 60 women; overall mean age
60 ± 15 years) and of 62 patients of a “validation group“ (33 men; 29
women; overall mean age 62 ± 16 years) in whom a CT of the thorax
was performed and with a radiologically confirmed diagnoses of one of
the following inclusion criteria: normal lung parenchyma, emphysema,
or fibrosis. Patient data were attributed randomly to the “test” and the
‘validation group’. Two radiologists (one with 10 years of experience,
one with 20 years of experience) attributed the data sets in concordance
to the different patient groups. “Normal’ was diagnosed by the absence
of any visible pulmonary abnormality or pathology of macroscopic
pulmonary structures (bronchial, pleural, large vessels) or small struc-
tures as distribution of tissue, vessels or air. ‘Emphysema’ was diag-
nosed according to the definitions of centrilobular, panlobular, and
paraseptal emphysema. Other diseases, leading to low-attenuation
patterns (missing lung destruction, mosaic perfusion, cystic lung dis-
eases), were carefully excluded. The diagnosis of fibrosis was based on
the clinical suspicion of an idiopathic interstitial pneumonia (IIP) or
lung fibrosis with known etiology and radiological criteria of fibrosis.
According to the classification of the American Thoracic Society and the
European Thoracic Society of IIP, only patterns of major IIP with fi-
brotic morphology as non-specific interstitial pneumonia (NSIP) and
idiopathic pulmonary fibrosis (usual interstitial pneumonia (UIP)-pat-
tern) were included. Non-fibrotic IIP (smoke related as respiratory
bronchiolitis - interstitial lung disease and desquamative interstitial
pneumonia, and (sub-) acute IIP (acute interstitial pneumonia or
cryptogenic organizing pneumonia), rare IIP (lymphocytic interstitial
pneumonia and idiopathic pleuroparenchymal fibroelastosis), as well as
non-classifiable diseases, were not included in the study. Cases of lung
fibrosis with known etiology (i.e. drug-toxicity, asbestosis, collagenosis)
with typical patterns of UIP or NSIP were included in the study. Patients
with combined pulmonary fibrosis and emphysema were excluded.
Table 1 shows the gender and age distribution of the different lung
parenchyma groups.

2.2. CT imaging

Imaging was performed with a 64- or a 40- section multidetector CT
scanner (Somatom Force (Dual Source; 29 examinations from test and
validation group) or Somatom Definition AS; 191 examinations from
test and validation group; Siemens Medical Systems, Erlangen,
Germany). The following protocol was used: supine position, head first;
deep inspiration; range: apex to diaphragm; 120 kV; tube current was
adjusted depending on body weight: < 75 kg: 25mAs;> 75 kg: 45mAs
on the 64MSCT; and 50 mAs on the 40MSCT; pitch 1.2; slice re-
construction thickness 1mm. On both scanners image reconstructions
were performed using filtered back projection kernel B50f into a
512× 512 voxel matrix.

2.3. Lung segmentation

The software package MEVIS Pulmo 3D (Version 3.6.1, Fraunhofer
MEVIS, Bremen, Germany), was used for the lung segmentation and the
density histogram calculation, which was defined as frequency of voxels
as function of HU [19,20].

2.4. Image marker calculations

All image marker methods were implemented in a computer pro-
gram, using the image analysis software IDL®, Version 8.4, Exelis Visual
Information Solutions, Boulder, CO, USA.

2.4.1. EI concept
The percent EI was calculated as follows from the density histogram

data of a segmented lung:

=
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EI
number of voxels having a HU 950

number of voxels of the complete HU range
*100.

2.4.2. PV concept
PV is defined as the HU value that corresponds to the value of 0.15

on the y-axis of a normalized cumulative lung density histogram, which
corresponds to the 15th percentile value.

2.4.3. MV, V, S and K concepts
The standard statistics parameters MV, V, S, and K were estimated

using the “MOMENT” function of the IDL program package. This
function was applied to the density histogram’s data as input.

2.4.4. HFS concept
At first, a cumulative histogram was calculated from the density

histogram from the MEVIS Pulmo 3D lung segmentation results. Next,
the cumulative frequencies of the histogram were normalized to 1.
These calculations define a normalized cumulative histogram with va-
lues in the range from 0 to 1 on the frequency-axis, which is the y-axis.
This axis is labeled “normalized frequency” on later shown line graphs,
Fig. 1. The original HU-scale, the x-axis, of the density histogram laid in
the range from −1024 to 150 HU. This scale was shifted so that it
began at a value of 0, which is labeled “shifted HU” on the resulting line
graphs. Henceforth, such normalized and x-axis shifted cumulated
histograms are called “transformed histograms”.

After that, a transformed histogram was fitted to a logistic growth
function, which was introduced by Verhulst [21].
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Here, y corresponds to the normalized cumulative frequency of a
transformed histogram, x are the shifted HU values, and A0, A1, and A2

are the fit-parameters. To enable the estimation of the fit-parameters, a
curve fit algorithm needs initial values of the fit-parameters, so that it
can optimize the fitted function to the measured transformed histogram
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