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Abstract

Advances in both imaging and computers have synergistically led to a rapid rise in the potential use of artificial intelligence in various
radiological imaging tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease
discovery. A brief overview of the field is given here, allowing the reader to recognize the terminology, the various subfields, and
components of machine learning, as well as the clinical potential. Radiomics, an expansion of computer-aided diagnosis, has been
defined as the conversion of images to minable data. The ultimate benefit of quantitative radiomics is to (1) yield predictive image-based
phenotypes of disease for precision medicine or (2) yield quantitative image-based phenotypes for data mining with other -omics for
discovery (ie, imaging genomics). For deep learning in radiology to succeed, note that well-annotated large data sets are needed since
deep networks are complex, computer software and hardware are evolving constantly, and subtle differences in disease states are more
difficult to perceive than differences in everyday objects. In the future, machine learning in radiology is expected to have a substantial
clinical impact with imaging examinations being routinely obtained in clinical practice, providing an opportunity to improve decision
support in medical image interpretation. The term of note is decision support, indicating that computers will augment human decision
making, making it more effective and efficient. The clinical impact of having computers in the routine clinical practice may allow
radiologists to further integrate their knowledge with their clinical colleagues in other medical specialties and allow for precision

medicine.
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Advances in both imaging and computers have synergisti-
cally led to a rapid rise in the potential use of artificial in-
telligence in various radiological imaging tasks, such as risk
assessment, detection, diagnosis, prognosis, and therapy
response, as well as in multi-omics disease discovery.
Although computer-aided detection (CADe) has been
proposed, developed, and clinically used since 1966, espe-
cially in thoracic and breast imaging [1-5], the widespread
progress in multple clinical decision-making tasks and
multiple disease sites has only advanced in the past decades
with the corresponding access to large computational re-
sources, including computer power, storage, and digital
imaging, as well as increased electronic access to information
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at the time of interpretation (eg, clinical history, laboratory
data, prior examinations).

A brief overview of the field is given here, allowing the
reader to recognize the terminology, the various subfields,
and components of machine learning, as well as the clinical
potential. Figure 1 shows the number of publication
counts in PubMed for searches on computer-aided diag-
nosis (CADx) in radiology, machine learning, and deep
learning from 1972 to middle of 2017. Note that in each
of these areas, there are numerous review publications;
however, the aim of this article is to elucidate the concepts
and generalities. The range in presentation of various subtle
disease states, the need for large annotated clinical data sets,
and the complex structure of many machine learning
methods signify much need for continued research and
development before full clinical incorporation and use.

CADe, CADx, AND DECISION SUPPORT

Medical image interpretation is the main undertaking of
radiologists, with the tasks requiring both good image
quality and good image interpretation. Image interpretation
by humans is limited by the presence of structure noise
(camouflaging normal anatomical background), incomplete
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Fig 1. Number of paper counts in PubMed for searches on
computer-aided diagnosis in radiology, machine learning, and
deep learning from 1972 to middle of 2017.

visual search patterns, fatigue, distractions, the assessment of
subtle or complex disease states, vast amounts of image data,
and the physical quality of the image itself.

CADe and CADx have been under development for
decades [1-5]. In fact, CADe systems have already been
commercialized and have been in clinical use since the
turn of the century [6]. In addition, over the past few
decades, various investigators have been developing
image analysis methods for CADx, such as the
computer-assisted quantitative characterization of breast
lesions on clinical images, as well as in the assessment of
cancer risk [4].

There is no one-size-fits-all when it comes to com-
puter algorithms and specific radiological interpretation
tasks. Fach computerized image analysis method requires
customizations specific to the task as well as the imaging
modality. For example, in breast cancer risk assessment,
computer-extracted characteristics of breast density or
breast parenchymal pattern are computed and related to
breast cancer risk factors [7-12]. CADe methods involve a
localization task and serve as a second opinion to
radiologists in their task of finding suspicious regions
within images, as in screening mammograms, leaving
subsequent patient management decisions to the
radiologist. CADx involves the characterization of a
region or tumor, initially indicated by either a
radiologist or a computer, after which the computer
characterizes the suspicious region or lesion or estimates
its probability of disease, again leaving the patient

management to the physician [4].

RADIOMICS AND IMAGING GENOMICS
(RADIOGENOMICS)

Effective diagnosis and treatment of disease rely on the
integration of information from multiple patient tests

involving clinical, molecular, imaging, and genomic data
(ie, various “-omics”). Radiomics, an expansion of CADx,
has been defined as the conversion of images to minable
data [13-15]. Obtaining radiomic data may involve
computer segmentation of a tumor from its background
followed by computer extraction of various tumor
features. The ultimate benefit of quantitative radiomics
is to (1) yield predictive image-based phenotypes of dis-
case for precision medicine or (2) yield quantitative
image-based phenotypes for data mining with other
-omics for discovery (ie, imaging genomics).

Radiomic features can be described as handcrafted or
engineered, with intuitive features or deep-learned fea-
tures. In this section, the focus is on handcrafted features
for which computer algorithms are developed based on
some analytical feature-extraction approach, such as
the calculation of geometric shape of a tumor. For
example, Figure 2 demonstrates a computer-aided design
or radiomics pipeline for the computer extraction of
various characteristics of breast tumors on dynamic
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Fig 2. Schematic flowchart of a computerized tumor pheno-
typing system for breast cancers on DCE-MRI. The computer
aided diagnosis (CAD) radiomics pipeline includes computer
segmentation of the tumor from the local parenchyma and
computer-extraction of “handcrafted” radiomic features
covering six phenotypic categories: (1) size (measuring tumor
dimensions), (2) shape (quantifying the 3-D geometry), (3)
morphology (characterizing tumor margin), (4) enhancement
texture (describing the heterogeneity within the texture of the
contrast uptake in the tumor on the first postcontrast MRIs),
(5) kinetic curve assessment (describing the shape of the ki-
netic curve and assessing the physiologic process of the uptake
and washout of the contrast agent in the tumor during the
dynamic imaging series, and (6) enhancement-variance kinetics
(characterizing the time course of the spatial variance of the
enhancement within the tumor) [16-21]. CAD = computer-
aided diagnosis; DCE-MRI = dynamic contrast-enhanced MRI.
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