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Abstract

Purpose: The aim of this study was to determine whether deep features extracted from digital mammograms using a pretrained deep
convolutional neural network are prognostic of occult invasive disease for patients with ductal carcinoma in situ (DCIS) on core needle biopsy.

Methods: In this retrospective study, digital mammographic magnification views were collected for 99 subjects with DCIS at biopsy, 25 of
which were subsequently upstaged to invasive cancer. A deep convolutional neural network model that was pretrained on nonmedical images
(eg, animals, plants, instruments) was used as the feature extractor. Through a statistical pooling strategy, deep features were extracted at
different levels of convolutional layers from the lesion areas, without sacrificing the original resolution or distorting the underlying topology.
A multivariate classifier was then trained to predict which tumors contain occult invasive disease. This was compared with the performance
of traditional “handcrafted” computer vision (CV) features previously developed specifically to assess mammographic calcifications.

The generalization performance was assessed using Monte Carlo cross-validation and receiver operating characteristic curve analysis.

Results: Deep features were able to distinguish DCIS with occult invasion from pure DCIS, with an area under the receiver operating
characteristic curve of 0.70 (95% confidence interval, 0.68-0.73). This performance was comparable with the handcrafted CV features
(area under the curve = 0.68; 95% confidence interval, 0.66-0.71) that were designed with prior domain knowledge.

Conclusions: Despite being pretrained on only nonmedical images, the deep features extracted from digital mammograms demon-

strated comparable performance with handcrafted CV features for the challenging task of predicting DCIS upstaging.
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INTRODUCTION

More than 60,000 women in the United States are
diagnosed with ductal carcinoma in situ (DCIS) every
year, representing approximately 20% of all new breast
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cancer cases [1]. However, the risk for progression from
DCIS to invasive cancer is still unclear, with estimates
ranging from 14% to 53% [2]. In addition, up to 50%
of lesions diagnosed as pure DCIS by core-needle
biopsy will be upstaged to contain invasive disease at
definitive surgery [3]. Methods that could predict an
occult invasive component associated with  this
upstaging may affect treatment planning and avoid
delays in definitive diagnosis.

Many studies have sought to identify preoperative
predictors of DCIS upstaging. Various immunohisto-
chemical biomarkers, histological features, and medical
image findings have shown limited predictive power
[3-13]. In contrast, computer extracted features, such as
those designed for breast cancer screening [14-18], may
be a promising alternative because of the quantitative

and reproducible methodology. Previously, our group
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(CV)

mammographic features can be used to predicc DCIS

[19] demonstrated that computer vision
upstaging with performance comparable with that of a

radiologist. Nevertheless, this process of feature
engineering is time consuming and might not capture
all the image information.

Deep learning, especially deep convolutional neural
networks (CNNs), has emerged as a promising approach
for many image recognition or classification tasks [20],
demonstrating human or even superhuman performance
[21]. Typically deep learning requires training on very
large image data sets with appropriate labeling and has
been applied to several areas in medical imaging [22,23].
Deep CNN models learn a multiple-level, latent feature
representation during the training procedure, without any
input of prior expert knowledge. Used as a feature
extractor, some pretrained CNN models can match or
surpass the performance of domain-specific, handcrafted
features [24-27]. Several recent studies applied this to
tasks,
from chest radiography, chest CT, otoscopy, and
endoscopy [28-32].

The purpose of this investigation was to determine

medical including classification of images

whether DCIS upstaging can be predicted using
deep features extracted from digital mammograms by a
pretrained deep CNN. Additionally, we provide a
head-to-head performance comparison between these
nonmedical deep features and handcrafted CV features
developed with breast cancer domain knowledge.

METHODS

Digital Mammogram Data Set

The study was approved by the institutional review board
with a waiver of the requirement to obtain informed
consent. We identified women aged 40 years or greater
with stereotactic biopsy—proven DCIS presenting with
only calcifications. Exclusion criteria included the pres-
ence of any masses, asymmetries, or architectural distor-
tion; history of breast cancer or prior surgery; and presence
of microinvasion at the time of initial biopsy. Ninety-nine
subjects met these criteria, 25 of whom were upstaged.
We collected the diagnostic digital magnification views,
all produced by GE Senographe Essential systems
(GE Healthcare, Little Chalfont, United Kingdom).

Extracting Handcrafted CV Features as
Reference

As the reference baseline, we previously presented a
model [19] based on handcrafted CV features. Three

types of mammographic features were extracted from
segmented individual microcalcifications (MCs) and the
whole cluster for each DCIS lesion, including (1) shape
features to describe the morphology and size of MCs
and clusters, (2) topological features from weighted
graphs associated with the clusters, and (3) texture
features such as from gray-level co-occurrence matrices.
Within a cluster, 25 CV features were computed for in-
dividual MCs. To describe the whole cluster, four global
statistical measures were computed across all MCs: mean,
standard deviation, minimum, and maximum. Overall,
we obtained a set of 113 handcrafted CV features for each
subject: 25 X 4 on the basis of individual MCs and 13

cluster features.

Extracting Deep Features Using a Pretrained
CNN Model

In this study, we selected the widely used deep CNN model
VGG [33] (specifically the configuration with 16 layers,
VGG-16) because it has been very successful in many
different localization and classification tasks [26,34-36].
VGG model
straightforward CNN ' architecture, which facilitates the

Moreover, the adopts the most
extraction of deep features from multiple levels. As
shown in Figure 1, the VGG-16 model consists of 16
weight layers, including 13 convolutional layers with
filter size of 3 x 3, and 3 fully connected layers at the end.
The convolutional layers are divided into five groups, and
each group is followed by a max-pooling layer. The num-
ber of filters of convolutional layer group starts from 64 in
the first group and then increases by a factor of 2 after each
max-pooling layer, until it reaches 512. The overall train-
able parameters are more than 130 million.

We used the VGG-16 model with parameters pre-
trained on the ImageNet data set [37], which is a large
database with more than 20 million images arranged
into more than 15,000 nonmedical concepts and
categories (eg, animals, plants, instruments). During
training, ImageNet images are usually resized into
square, low-resolution (224 x 224 x 3 RGB) versions.
Following that convention resulted in consistently poor
performance for this study, however, because that resizing
led to sacrificing the resolution or distorting the under-
lying topology of each lesion. Therefore, we directly input
the region of interest (ROI) from the digital magnifica-
tion view at its full resolution into the pretrained VGG-
16 model. This means the input image size varies because
of different lesion sizes. Accordingly, the last three fully
connected layers cannot be used to extract features, and

we only extracted deep features from convolutional layers,
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