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Magnetic resonance (MR) imaging plays an important role in clinical diagnosis and scientific research. A clean
MR image can better provide patient's information to doctors or researchers for further treatment. However, in
real life, MR images are inevitably corrupted by annoying Rician noise in the process of imaging. Aiming at the
Rician noise of 3D MR images, a framework is proposed to suppress noise by low-rank matrix approximation
(LRMA) with weighted Schatten p-norm minimization regularization (WSNMD-3D). The proposed method not
only considers the importance of different rank components, but can also approximate the true rank of the latent
low-rank matrix. This approach first groups similar non-local cubic patches extracted from the noisy 3D MR
image into a matrix whose columns are vectorized patches. The above matrix can be modeled as a low-rank
matrix approximate model. Then weighted Schatten p-norm minimization (WSNM) is applied to the model,
which shrinks different rank components with different treatments. Finally, the denoised 3D MR image is ac-
quired by aggregating all denoised patches with weighted averaging. Experimental results on synthetic and real
3D MR data show that the proposed method obtains better results than state-of-the-art methods, both visually

and quantitatively.

1. Introduction

Magnetic resonance (MR) imaging is a medical imaging technique
used in radiology to visualize detailed internal structure of the body
(Arab et al., 2018). The MR image has been widely used for clinical
diagnosis and scientific research. However, due to the imaging char-
acteristics of MR images, noise will always be introduced in the process
of image acquisition, especially under the requirements of high speed
capture or high resolution. Accuracy of clinical diagnosis and the ef-
fectiveness of automated computer analysis are reduced due to the
adverse effects of noise on image quality, contrast, and analytical
structure. So noise reduction plays an important role in MR image
analysis. Noise model in MR image is assumed as Rician distribution
(Nowak and Wavelet-based, 1999) which is different from the natural
images whose noise is often modeled as Gaussian distribution. There-
fore, removing the Rician noise in MR images is still a challenging topic.

Generally speaking, the denoising methods for MR images are
mainly divided into two types (Mohan et al., 2014): One way is to ac-
quire the objective several times and average them. However, this will
increase the acquisition time and the objective must remain stationary
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in the whole acquisition process. Another way is to denoise the MR
images by using the post processing algorithms which will not effect the
acquisition time.

Nowadays, a lot of excellent algorithms are proposed for MR image
denoising, such as gradient-based methods, statistic-base methods and
transform domain-based methods. For gradient-based methods, filters
based on anisotropic diffusion (AD) and total variation (TV) regular-
ization can reduce noise and retain important image structures as well
(Gerig et al., 1992; Sijbers et al., 1999; Liu et al., 2014b). However,
gradient-based methods always erase small image features due to
blocky (staircase) effect cased by edge enhancement. Statistic based
approaches are also widely used in MR image denoising area because of
their good performance for removing Rician noise (Awate and
Whitaker, 2007; Rajan et al., 2012; Aja-Fernandez et al., 2008). But
owing to the underlying assumption of neighborhood stationarity, small
details are often lost while removing the Rician noise. In addition,
wavelet and other transform-based methods, such as contourlet and
curvelet, play an important role in MR image denoising field (Pizurica
et al., 2003; Anand and Sahambi, 2010). Although fixed bases of the
above transform-based methods bring excellent denoising performance,
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visual artifacts will be introduced due to using a fixed basis to represent
local structures presented in MR images. To overcome the drawback,
many data-driven based methods are proposed, such as singular value
decomposition (SVD) (Zhang et al., 2015), principal component ana-
lysis (PCA) (Manjon et al., 2013) and dictionary learning (DL) (Wang
et al., 2013). These methods share a similar strategy that shrinks the
noise-dominant components by thresholding algorithm to approximate
noise-free components in transform domain. Except for the methods
above, non-local mean (NLM) based methods considering the non-local
similarity and redundancy of the image have provided excellent per-
formance in MR image denoising (Manjén et al., 2008). Recently,
methods based on non-local similarity and signal sparseness have ob-
tained remarkable achievements, such as 3D non-local transform-do-
main filter (BM4D) (Maggioni et al., 2013) and PRI non-local principal
component analysis (PRI-NL-PCA) (Manjon et al., 2015).

More recently, low-rank matrix approximate (LRMA) that aims to
recover the latent low-rank matrix structure from its noisy observation,
has attracted increasing attentions in image processing due to its po-
pularity and effectiveness. In general, LRMA can be implemented by
low-rank matrix factorization approaches (Buchanan and Fitzgibbon,
2005; Ke and Kanade, 2005) as well as rank minimization approaches,
the latter are our main research object. Because it is a NP hard problem
of direct rank minimization, the problem is usually relaxed by sub-
stitutively minimizing the nuclear norm of the estimation matrix. This
solution is a convex relaxation of minimizing the matrix rank and is
known as nuclear norm minimization (NNM). The nuclear norm is
defined as the sum of the singular values of a matrix X € R™*", i. e.,
[1X]|- = Z04X), where 0/(X) represents the i-th singular value of X and
i=1,...,r,r = min{n, m}. Given a matrix Y, the goal of NNM is to find
a low-rank matrix X that satisfies the following objective function:

X = argmin|lX — Y| + =liXlk.

X M
where 7 is a regularization parameter to balance the data fidelity and
regularization, and |||  is Frobenius norm. Many models based on NNM
have been proposed in recent years (Ji and Ye, 2009; Lin et al., 2009;
Cai et al., 2008). For example, (Cai et al., 2008) proved that the NNM
can be easily solved by a soft-thresholding operation.

Despite the convexity of the NNM model, the recovery performance
of the convex relaxation may be reduced in the measurement of noise,
and the solution may seriously deviate from the original solution of
rank minimization problem (Liu et al., 2014a; Nie et al., 2012; Mohan
and Fazel, 2012). Therefore, a restricted Schatten p-norm minimization
is proposed by (Liu et al., 2014a; Nie et al., 2012; Mohan and Fazel,
2012) to solve the problem of non-convex relaxation of the rank
minimization. The Schatten p-norm minimization provides better ap-
proximation to the original NP hard problem, and obtains better the-
oretical and practical results than the standard NNM (Xie et al., 2015).
The Schatten p-norm with 0 < p < 1 is defined as:

£

In theory, Schatten p-norm will ensure a more accurate recovery of the
signal, while requiring only a weaker restricted isometry property than the
traditional trace form (Liu et al., 2014a). Xie et al. (2015) and Lu et al.
(2015) had proved that the Schatten p-norm based model exceeds the
standard NNM.

Although NNM and Schatten p-norm minimization cause wide-
spread concern in academia due to their validity and rigorous theore-
tical derivation, they still have some limitations. That is, traditional
NNM and Schatten p-norm minimization treat all singular values
equally and shrink them with the same thresholding. But actually, the
large singular values of a data matrix provide the significant edge and
texture information. That means when the image is denoised from its
observation, larger singular values should be shrunk less, while small
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singular values are just the opposite. Traditional NNM and Schatten p-
norm minimization models are not flexible enough to deal with this
problem. To overcome the drawback of NNM, weighted nuclear norm
minimization (WNNM) is proposed by Gu et al. (2017). Weighted nu-
clear norm is defined as

.
XNl = Y @101 (X),

i=1

€))

where ® = [w1, ..., ,]7 is a non-negative vector and w; = 0 is the
weight assigned to 0y(X). Compared with NNM, WNNM assigns different
weights to different singular values and can better protect image details
while removing noise. Weighted nuclear norm proximal (WNNP) op-
erator is the key step of solving general WNNM model, which de-
termines the general solving regime of the WNNM problem:
5 . )
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Although non-convesx, it is proved that WNNP is equivalent to a stan-
dard quadratic programming problem with linear constraints, which
helps to solve the original problem by using the existing convex opti-
mization solvers (Gu et al., 2017). It is worth mentioning that when the
weights are sorted in a non-descending order, the optimal solution can
be easily obtained in closed-form.

Inspired by WNNM and Schatten p-norm minimization, weighted
Schatten p-norm minimization (WSNM) (Xie et al., 2015) is proposed
for LRMA. It is proved that WSNM is more flexible in handling different
rank components and provides better approximation to the original
LRMA problem than WNNM and other NNM-based methods. In the
solution phase, under certain weights permutation, WSNM can be
equivalently converted into independent non-convex [,-norm sub-
problems, whose global optimum can be effectively solved by gen-
eralized soft-thresholding algorithm (GST) (Zuo et al., 2013).

At present, most Rician noise denoising algorithms have been ver-
tified that they can remove the noise efficiently. However, they are not
as good in terms of details and structural protection due to lacking of
the ability to capture detailed image information. To overcome the
above disadvantages, we propose a LRMA model using WSNM reg-
ularization for Rician noise reduction in 3D MR images (WSNMD-3D).
When the matrices are formed by similar noisy cubic patches extracted
from the noisy image, the noise reduction problem can be modeled as a
LRMA model. WSNM is applied to the model, shrinks different rank
components with different treatments. The final denoised 3D MR image
is acquired by aggregating all denoised patches with weighted aver-
aging. Experiments on synthetic and real 3D MR data indicate that the
proposed method outperforms other state-of-the-art methods.

The structure of this paper is as follows: In Section 2, we briefly
introduce the WSNM model and its solution, WSNM-based denoising
algorithm on 3D image (WSNMD-3D), and the application of WSNMD-
3D on 3D MR image. In Section 3, we show experimental results and
discuss the merits of the proposed approach with respect to other
methods. Finally, we conclude our paper in Section 4.

2. Material and methods
2.1. Weighted Schatten p-norm minimization

2.1.1. LRMA-based denoising

Grouped similar patches always share similar underlying image
structures. Therefore, LRMA can be used to recover true noise-free
image patches by low-rank modeling of non-local similarities. Usually,
matrix formed by vectorized similar patches can be considered as a low-
rank approximation of a noisy version.

Supposing we have an observation noisy image patch matrix
Y € R™*", the following model can be used to approximate the original
noise-free image information by finding out the latent low-rank matrix
(Xia et al., 2017):
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